

THEORY PROGRESS RELATED TO THE RHIC BEAM ENERGY SCAN PROGRAM

4/11/2019 2019 GHP WORKSHOP, DENVER, CO

BEAM ENERGY SCAN (BES) II AT RHIC

- QCD critical point & phase diagram
- Properties of baryon-rich QGP
- Onset of chiral symmetry restoration
- Unexpected new phenomena

BEAM ENERGY SCAN THEORY

Initial conditions 3D, conserved and axial charges

chiral anomaly and EM fields

hydrodynamics 3+1D, viscous conserved currents

hadronic dynamics

Equation of State LQCD+ model critical EoS

> fluctuations critical mode and hydrodynamic

global analysis of exp. data

explore new phenomena

BEAM ENERGY SCAN THEORY

Initial conditions 3D, conserved and axial charges

chiral anomaly and EM fields

hydrodynamics 3+1D, viscous conserved currents

hadronic dynamics

Equation of State Lattice QCD

fluctuations critical mode and hydrodynamic

global analysis of exp. data

explore new phenomena

EQUATION OF STATE AT $\mu_B = 0$

HotQCD, Nucl.Phys. A982 (2019) 847-850

Latest result for the QCD crossover temperature: $Tc \approx 156.5 \pm 1.5 \text{ MeV}$ from the chiral condensate 5

EQUATION OF STATE AT $\mu_B \neq 0$

$$Z = \int \mathcal{D}U e^{-S_G[U]} \det M[\mu_B]$$

 \rightarrow sign problem

One way to cope: Taylor expansion around $\mu_B = 0$:

$$\frac{P(T,\mu_B)}{T^4} = \sum_n \frac{1}{n!} \chi_n^B(T) \left(\frac{\mu_B}{T}\right)^n$$

$det M[\mu_B]$ is complex and Monte Carlo simulations are not feasible

EQUATION OF STATE AT $\mu_B \neq 0$

Taylor expansion up to $\mathcal{O}(\mu_B^6)$

Present reach of the Lattice QCD EoS:

 $\mu_B/T \lesssim 2$

also see: Guenther at. al.: Nucl. Phys. A967, 720-723 (2017)

[P(T,µ_B)-P(T,0)]/T⁴

EQUATION OF STATE AT $\mu_B \neq 0$

Present reach of the	275	
Lattice QCD EoS:	255	E
$\mu_B/T\lesssim 2$ or $\sqrt{s}\gtrsim 14.5{ m GeV}$	235	E
	∑ 215	-
	<u>≥</u> ⊢ 195	E
	175	
	155	_
	135	0

S/N_B (n_Q=0.4n_B, n_S=0)

Lines: Constant entropy to net-baryon number (Approximate evolution trajectories of inviscid QGP)

THE QCD CROSSOVER LINE $\frac{T_c(\mu_B)}{T_c} = 1 - \kappa_2^B \left(\frac{\mu_B}{T_c}\right)^2 - \kappa_4^B \left(\frac{\mu_B}{T_c}\right)^4 + \mathcal{O}(\mu_B^6)$

MORE TODAY 5:15PM IN TALK BY PETER PETRECZKY (DIRECTOR'S ROW I)

STAR: arxiv:1701.07065 ALICE: arxiv:1408.6403

CRITICAL POINT WITHIN REACH OF LQCD?

If there is a critical point close-by, we expect radius of convergence of Taylor series of pressure or susceptibility, r_c to be $< \infty$:

$$\chi_{2}^{B}(T,\mu_{B}) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} \chi_{2n+2}^{B} \left(\frac{\mu_{B}}{T}\right)^{2n}$$

$$r_{2n}^{\chi} = \left| \frac{2n(2n-1)\chi_{2n}^{B}}{\chi_{2n+2}^{B}} \right|^{1/2}, r_{c} = \lim_{n \to \infty} r_{2n}^{\chi}$$

To get r_c to be $< \infty$ we need $|\chi_{n+2}^B/\chi_n^B| \sim n^2$ which does not happen up to n=4 \rightarrow Identify disfavored region (T,µ_B)

BEAM ENERGY SCAN THEORY

Initial conditions 3D, conserved and axial charges

chiral anomaly and EM fields

hydrodynamics 3+1D, viscous conserved currents

hadronic dynamics

Equation of State model critical EoS

fluctuations critical mode and hydrodynamic

global analysis of exp. data

explore new phenomena

INCLUDE CRITICAL POINT IN LOCD EOS

P. Parotto et al, arXiv:1805.05249

 $\frac{\mu_B - \mu_{BC}}{T_C} = \mathbf{w} \left(-r\rho \cos \alpha_1 - h \cos \alpha_2 \right)$

EQUATION OF STATE AT FINITE DENSITIES A. Monnai, B. Schenke and C. Shen, arXiv:1902.05095

Lattice QCD EoS has been extended to non-zero net baryon,

see also: J. Noronha-Hostler, P. Parotto, C. Ratti and J. M. Stafford, arXiv:1902.06723

strangeness, and electric charges and implemented in hydrodynamics

BEAM ENERGY SCAN THEORY

Initial conditions 3D, conserved and axial charges

chiral anomaly and EM fields

hydrodynamics 3+1D, viscous conserved currents

hadronic dynamics

Equation of State LQCD+ model critical EoS

fluctuations in equilibrium

global analysis of exp. data

explore new phenomena

CUMULANTS OF NET BARYON NUMBER

- At the critical point the correlation length $\boldsymbol{\xi}$ of the order parameter diverges (for infinite volume)
- Growing correlation length means increasing fluctuations
- Order parameter for chiral critical point is chiral condensate Chiral condensate mixes with the baryon density
- expect large baryon number fluctuations at the critical point
- Measure using cumulants

$$\kappa_n^B = \frac{\partial^n}{\partial (\mu_B/T)^n} \ln Z = \frac{\partial^{n-1}}{\partial (\mu_B/T)^{n-1}} \langle N_B \rangle \qquad \text{(note that } \chi_n^B = \kappa_n^B$$

 $\kappa_1^B = \langle N_B \rangle, \quad \kappa_2^B = \langle (N_B - \langle N_B \rangle)^2 \rangle$

$$, \quad \kappa_3^B = \langle (N_B - \langle N_B \rangle)^3 \rangle$$

Sensitivity to crit. point increases with n: $\kappa_2^B \sim \xi^2$, $\kappa_3^B \sim \xi^{4.5}$, $\kappa_4^B \sim \xi^7$ 15

CUMULANTS OF NET BARYON NUMBER

- Cumulants scale with volume, which is not well known in HIC
- So take ratios of cumulants

$$\frac{\chi_1^B(T,\mu_B)}{\chi_2^B(T,\mu_B)} \equiv \frac{M_B}{\sigma_B^2} ,$$

$$\frac{\chi_3^B(T,\mu_B)}{\chi_1^B(T,\mu_B)} \equiv \frac{S_B\sigma_B^3}{M_B} ,$$

$$\frac{\chi_4^B(T,\mu_B)}{\chi_2^B(T,\mu_B)} \equiv \kappa_B\sigma_B^2 .$$

with mean (M_B), variance ($\sigma_{\rm B}^2$), skewness (S_B), kurtosis (κ_B)

LQCD consistent with data but should not be compared directly also see: Borsanyi et. al.: JHEP 1810, 205 (2018)

BEAM ENERGY SCAN THEORY

Initial conditions 3D, conserved and axial charges

chiral anomaly and EM fields

hydrodynamics 3+1D, viscous conserved currents

hadronic dynamics

Equation of State LQCD+ model critical EoS

> fluctuations critical mode and hydrodynamic

global analysis of exp. data

explore new phenomena

DYNAMICAL INITIAL STATE FOR 3D HYDRO

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

Nuclear overlap time becomes large at lower energies:

• The interaction zone is not point like

- Colliding nucleons are decelerated with a classical string model
 - A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041
- The lost energy and momentum of the decelerated nucleons are fed into hydrodynamics as source terms

ENERGY DEPOSITION IN SPACE-TIME

Schenke, Phys.Rev. C97 (2018) 024907

en, B.

Sh

Ú

BEAM ENERGY SCAN THEORY

Initial conditions 3D, conserved and axial charges

chiral anomaly and EM fields

hadronic dynamics

Equation of State LQCD+ model critical EoS

> fluctuations critical mode and hydrodynamic

global analysis of exp. data

hydrodynamics 3+1D, viscous conserved currents

explore new phenomena

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

t=0.5 fm/c

energy density contours

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

t=0.8 fm/c

energy density contours

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

t=0.9 fm/c

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

t=1.0 fm/c

energy density contours

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

t=1.5 fm/c

energy density contours

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

t=2.5 fm/c

energy density contours

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

t=3.5 fm/c

energy density contours

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

t=5.5 fm/c

energy density contours

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

t=6.5 fm/c

energy density contours

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

t=7.5 fm/c

energy density contours

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

t=9.5 fm/c

Х

energy density contours

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

t=13.5 fm/c

energy density contours

NET PROTON RAPIDITY DISTRIBUTIONS

C. Shen, B. Schenke, in preparation

TODAY 4PM IN TALK BY CHUN SHEN (DIRECTOR'S ROW I)

Model baryon stopping Baryon number can fluctuate along the string:

one parameter for all energies

Here no baryon diffusion

BARYON DIFFUSION

G. Denicol, C. Gale, S. Jeon, A. Monnai, B. Schenke and C. Shen, Phys. Rev. C 98, 034916 (2018), arXiv:1804.10557

Extended MUSIC 3+1D hydro to include baryon diffusion

TODAY 4PM IN TALK BY CHUN SHEN (DIRECTOR'S ROW I)

EVOLUTION IN THE $T-\mu_B$ PLANE

dynamic initial state + 3+1D hydrodynamic evolution

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

EVOLUTION IN THE $T-\mu_B$ PLANE

dynamic initial state + 3+1D hydrodynamic evolution

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

EVOLUTION IN THE $T-\mu_B$ PLANE dynamic initial state + 3+1D hydrodynamic evolution

EVOLUTION IN THE $T-\mu_B$ PLANE dynamic initial state + 3+1D hydrodynamic evolution

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

dynamic initial state + 3+1D hydrodynamic evolution

dynamic initial state + 3+1D hydrodynamic evolution

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

EVOLUTION IN THE $T-\mu_B$ PLANE • Fireball trajectory in the T- μ_B is a wide distribution

EVOLUTION IN THE T- μ_B PLANE Trajectory changes significantly with rapidity

BEAM ENERGY SCAN THEORY

Initial conditions 3D, conserved and axial charges

chiral anomaly and EM fields

> hadronic dynamics

Equation of State LQCD+ model critical EoS

effect on hydrodynamics

hydrodynamic fluctuations

global analysis of exp. data

explore new phenomena

FLUCTUATING HYDRODYNAMICS

Dissipation (as in viscous hydrodynamics) requires (thermal) fluctuations

$\partial_{\mu}(T^{\mu\nu}_{ideal} + \pi^{\mu\nu} + \Pi \Delta^{\mu\nu} + S^{\mu\nu}) = 0$

Main issue – "infinite noise" – leads to cutoff (cell-size) dependence. Addressed by noise mode filtering with FFT

M. Singh, C. Shen, S. McDonald, S. Jeon and C. Gale, Nucl. Phys. A982, 319 (2019)

 $S^{\mu
u}$ is the noise term

55

CONVERSION TO PARTICLES

Comparison to experiment requires event-by-event particle distributions

Hydro Sample particles Local event by event charge conservation requires new sampling method

Standard procedure: Cooper-Frye + grand-canonical sampling in each surface cell

Solution: Micro-canonical sampling Dmytro Oliinychenko, Volker Koch, arXiv:1902.09775

Hadronic transport

Data comp.

- For fluct. hydro fluctuations and correlations are already part of hydro ensemble
- additional (Poisson) fluctuations from Cooper-Frye freeze out add extra (un-physical) fluctuations
- Particlization needs to conserve charges locally and event by event

CONVERSION TO PARTICLES

Comparison to experiment requires event-by-event particle distributions

Micro-canonical sampling Dmytro Oliinychenko, Volker Koch, arXiv:1902.09775

Technical problem: Number of particles per cell N<1 Solution: Collect hyper surface cells into patches with N>1 and impose conservation laws on patch and preserve local mean densities

Done using Metropolis algorithm

Scaled variance standard Cooper-Frye analytical sampled 1.1 З Poisson scaled variance 0.8 (b) 0.7 π^+ Ω^{-} Ξ^{-}

BEAM ENERGY SCAN THEORY

Initial conditions 3D, conserved and axial charges

chiral anomaly and EM fields

> hadronic dynamics

Equation of State LQCD+ model critical EoS

effect on hydrodynamics

critical behavior

global analysis of exp. data

explore new phenomena

DIVERGING BULK VISCOSITY AT CRITICAL POINT Monnai, Mukherjee, Yin: Phys. Rev. C95, 034902 (2017)

Critical behavior of bulk viscosity: $\zeta \sim \xi^3$ (see A. Onuki, Phys. Rev. E 55, 403 (1997))

HYDRO+ COUPLING TO CRITICAL MODE

M. Stephanov, Y. Yin, arXiv:1704.07396, arXiv:1712.10305

Treating the slow mode Φ with $\tau_{\Phi} \sim \xi^3$ separately (relaxation equation) will increase range of validity:

Major effects of critical fluctuations on the evolution:

- Stiffening of the EoS with increasing frequency Explicit implementation and simulation ongoing

MORE TODAY 4:25PM (DIRECTOR'S ROW I)

 $\zeta \sim \tau_{\Pi} \sim \tau_{\sigma} \sim \xi^3$ Hydro breaks down because of large relaxation time

• Strong frequency dependence of the anomalously large bulk viscosity

BEAM ENERGY SCAN THEORY

Initial conditions 3D, conserved and axial charges

chiral anomaly and EM fields

hydrodynamics 3+1D, viscous conserved currents

hadronic dynamics

Equation of State LQCD+ model critical EoS

> fluctuations critical mode and hydrodynamic

global analysis of exp. data

explore new phenomena

BEAM ENERGY SCAN THEORY

Initial conditions 3D, conserved and axial charges

TODAY 4:50PM IN TALK BY PRITHWISH TRIBEDY (DIRECTOR'S ROW I)

hydrodynamics 3+1D, viscous conserved currents

hadronic dynamics

Equation of State LQCD+ model critical EoS

> fluctuations critical mode and hydrodynamic

global analysis of exp. data

explore new phenomena

SUMMARY AND OUTLOOK

- Going away from very high energies makes life more complicated: • No boost-invariance, finite chemical potentials, ...
- Significant progress on many aspects: Equation of state, initial conditions, 3+1D viscous fluid dynamics, (critical and hydrodynamic) fluctuations, conversion to particles, anomalous fluid dynamics, ...
- Comprehensive theoretical framework is being developed to support BES II
- To be addressed:
 - Numerical implementation of Hydro+
 - Full implementation of event-by-event conservation of conserved charges in statistical freeze-out How to match critical correlations to hadronic transport model

 - Early-time dynamics of chiral anomaly

BACKUP

REFINING THE SEARCH: BINNING IN RAPIDITY J. Brewer, S. Mukherjee, K. Rajagopal, Y. Yin, arXiv:1804.10215

Critical signatures easier to detect at lower rapidity

DESCRIBING RAPIDITY SPECTRA

C. Shen, B. Schenke, Phys.Rev. C97 (2018) 024907

Model baryon stopping - adjust string tension to get right amount of rapidity loss

THE BEAM ENERGY SCAN THEORY

Initial conditions 3D, conserved and axial charges

chiral anomaly and EM fields

hydrodynamics 3+1D, viscous conserved currents

hadronic dynamics

Equation of State LQCD+ model critical EoS

> dynamics of fluctuations

global analysis of exp. data

explore new phenomena

NON-EQUILIBRIUM EVOLUTION OF CRITICAL FLUCTUATIONS Mukherjee, Venugopalan, Yin, Phys. Rev. C92, 034912 (2015) Derive Fokker-Planck equations for the cur

Derive Fokker-Planck equations for the cumulants and study time evolution. Here we show kurtosis:

KIBBLE-ZUREK SCALING Mukherjee, Venugopalan, Yin, Phys. Rev. Lett. 117, 222301 (2016)

Close to CP, relaxation time $\tau_{eff} \sim \xi^z$ gets larger than time in which system tries to change ξ , (τ_{quench}) Then relevant scales are $\tau_{KZ} = \tau_{eff}(\tau^*) = \tau_{quench}(\tau^*)$ and $I_{KZ} = \xi_{eq}(T^*)$

Cumulants show a certain scaling with ξ_{eq} in equilibrium. Using the same scaling form with the constant I_{KZ} and T_{KZ} restores scaling in non-equilibrium Universality is restored

$$au - au_{\rm c} , \ t = ilde{ au} / au_{\rm KZ}$$

ANOMALOUS VISCOUS FLUID DYNAMICS AY 4:50PM S. Shi, Y. Jiang, E. Lilleskov, J. Liao, Annals Phys. 394 (2018) 50-72 HWISH TRIBEDY DIRECTOR'S ROW I)

Framework for linearized evolution of fermion currents in the QGP, on top of neutral background described by hydrodynamic simulations

also see:

Chiral transport equations from Wigner function formalism A. Huang, S. Shi, Y. Jiang, J. Liao, P. Zhuang, arXiv:1801.03640

ANOMALOUS VISCOUS FLUID DYNAMICS

S. Shi, Y. Jiang, E. Lilleskov, J. Liao, Annals Phys. 394 (2018) 50-72

u-flavor densities:

PREDICTIONS FOR THE ISOBAR RUN

S. Shi, Y. Jiang, E. Lilleskov, J. Liao, Annals Phys. 394 (2018) 50-72

 $\gamma_{\alpha\beta} \equiv \left\langle \cos(\phi_i + \phi_j - 2\Psi_{RP}) \right\rangle_{\alpha\beta}$ $\alpha, \beta = +, -$ SS = ++, -- OS = +-

H is pure CME contribution to **Y** correlator F is pure background, here estimated from Au+Au data

~15% difference between the two systems

70

70

PREDICTIONS FOR THE ISOBAR RUN B. Schenke, C. Shen, P. Tribedy, arXiv:1901.04378, in press in PRC

Realistic pure background estimate:

