

Stephen Kay University of Regina

APS GHP 2019 Denver, Colorado

- Motivation
- Experimental Setup
- Σ Results
- C_{x'} Preliminary Results

Stephen Kay University of Regina

APS GHP 2019 2 / 27

Motivation - Recent Observations

- LHCb has recently observed tetraquark and pentaquark candidate states

Figure: [1] - LHCb measurements of the decay $B^+\to J/\psi\phi K^+$ indicating four tetraquark candidates

APS GHP 2019

3

- A *uuuddd* hexaquark candidate, the d*(2380), has also been observed by another collaboration [1] - R.Aaij. et. al. PRL, 118:022003, 2017

Motivation - d*(2380) Dibaryon

Figure: [1,2] - Results from WASA-at-COSY showing structure at $\sqrt{s}=2380~{\rm MeV}$

- d* has $J^{\pi} = 3^+$, m = 2380 MeV and $\Gamma = 70$ MeV
- d* predominantly (90%) decays via $d^*
 ightarrow \Delta\Delta$

[1] - PRL 106, 242302 (2011), [2] - PRL 112, 202301 (2014)

Motivation - d*(2380) Dibaryon

Stephen Kay

University of Regina

APS GHP 2019 5 / 27

Motivation - New Degree of Freedom in Neutron Stars?

APS GHP 2019

6 / 27

I. Vidaña, M. Bashkanov, D.P. Watts, A. Pastore, PLB 781, pp112-116, 2018

- Need to know more about size and internal structure of d*(2380) \rightarrow Need photoproduction measurements

APS GHP 2019

27

University of Regina

Stephen Kay

Motivation - d*(2380) Photoproduction

- One potential photoproduction channel is $\gamma + d
 ightarrow d^{m{*}}
 ightarrow p + n$
- Anomalous proton polarisation in d* region?

R. Gilman and F. Gross nucl-th/0111015 (2001) , H. Ikeda et al., PRL 42, May 1979, 1321 , T. Kamae, T. Fujita, PRL 38, Feb 1977, 471

APS GHP 2019

8 / 27

University of Regina

Stephen Kay

Figure: [1] - Model predictions of the "size" of the d* (right) compared to deuteron (left)

APS GHP 2019

9 / 27

[1] - Chin. Phys. C 39, 7, 071001 (2015)

- Can gain information about the state by measuring polarisation observables in the reaction

Observable	Helicity Amplitude Combination
p_y	$2\Im \sum_{i=1}^{3} [F_{i+}^* F_{(i+3)-} + F_{i-} F_{(i+3)+}^*]$
Т	$2\Im \sum_{i=1}^{2} \sum_{j=0}^{1} \left[F_{(i+3j)+}^{*} F_{(i+3j+1)+}^{*} + F_{(i+3j)-} F_{(i+3j+1)-}^{*} \right]$
Σ	$2\Re \sum_{i=1}^{3} (-)^{i} \left[-F_{i+}F_{(4-i)-}^{*} + F_{(3+i)+}F_{(7-i)-}^{*} \right]$
T_1	$2\Im \sum_{i=1}^{3} (-)^{i} \left[-F_{i+} F_{(7-i)+}^{*} + F_{i-} F_{(7-i)-}^{*} \right]$
$C_{x'}$	$2\Re \sum_{i=1}^{3} [F_{i+}^* F_{(i+3)-} + F_{i-} F_{(i+3)+}^*]$
$\widetilde{\mathrm{C}}_{z'}$	$\sum_{i=1}^{6} \{ F_{i+} ^2 - F_{i-} ^2 \}$
$\mathcal{O}_{x'}$	$2\Im \sum_{i=1}^{3} (-)^{i+1} [F_{i+} F^*_{(7-i)+} + F_{i-} F^*_{(7-i)-}]$
$\mathcal{O}_{z'}$	$2\Im \sum_{i=1}^{3} (-)^{i+1} [F_{i+} F_{(4-i)-}^{*} + F_{(3+i)+} F_{(7-i)-}^{*}]$

APS GHP 2019

10 / 27

- F terms relate to helicity amplitudes

Motivation - New Polarimeter

- *n* previously unmeasured
- Polarimeter can measure \vec{n} and \vec{p} simultaneously
- Measure neutron via charge exchange interactions in polarimeter

- Establish if $d^*(2380)$ dibaryon has Electromagnetic Coupling

 \rightarrow Tests of size and internal structure

Stephen Kay University

University of Regina

APS GHP 2019 11 / 27

MAMI Layout

Stephen Kay

University of Regina

APS GHP 2019 12 / 27

A2 Hall Setup

Stephen Kay

University of Regina

APS GHP 2019 13 / 27

Overview of Polarimeter Setup

Stephen Kay University of Regina

APS GHP 2019 14 / 27

Overview of Polarimeter Setup

Stephen Kay

University of Regina

APS GHP 2019 15 / 27

- Installed new polarimeter at A2 hall in MAMI
- Real, polarised (circularly and linearly available) photon beam in A2 hall
- \sim 640 hour run in August 2016
- Σ , $C_{x'}$, $C_{z'}$, P_y^p , P_y^n , $O_{x'}$, $O_{z'}$ measurable
- To measure $\boldsymbol{\Sigma},$ need to look at angular distribution for events without scattering
- To measure C_{x^\prime} need to examine angular distribution of scattered neutrons

APS GHP 2019

16 / 27

Event Selection - Particle Assignment

- Particle assignment is based upon detector hit combinations

APS GHP 2019

17

27

Event Selection

- Energy loss correction applied to the proton track
- Reconstruct the "neutron" track from proton track information via $\underline{n}_{rec}=(\underline{d}+\underline{\gamma})-\underline{p}$
- Cuts:
 - Proton vertex
 - Missing mass of reconstructed track -

$$M_n = \sqrt{E_n^2 - p_n^2}$$

APS GHP 2019

18 / 27

- dE_{PID} vs E_{CB} cut on proton track (banana cut)
- Distance Of Closest Approach cut (DOCA)

Event Selection - EdE Cut

Stephen Kay University of Regina

APS GHP 2019 19 / 27

Event Selection - DOCA Method

Stephen Kay University of Regina

APS GHP 2019 20 / 27

Event Selection - DOCA

- DOCA occurs at the Point Of Closest Approach (POCA)

Stephen Kay

University of Regina

APS GHP 2019 21 / 27

Σ - Asymmetry Fitting

 $\phi_{\rm p}\,475\pm5 \text{MeV}\,\text{CM12}$

Stephen Kay

University of Regina

APS GHP 2019 22 / 27

Σ Results

Stephen Kay

APS GHP 2019

23

27

Black Data Points from - J.PhysG, 17, 8, 1189, F. V. Adamian et. al. Results published in - PLB, 789, 7-12, M. Bashkanov, S.Kay, D.P. Watts, C. Mullen et. al.

University of Regina

 $\Sigma \text{ Results}$

Stephen Kay University of Regina

APS GHP 2019 24 / 27

$C_{x'}$ - Asymmetry

 $\phi_{_{Sc}}$ Asymmetry (650 \pm 50) MeV CM3

Stephen Kay

University of Regina

APS GHP 2019 25 27

$C_{x'}$ - Results

Stephen Kay University of Regina

APS GHP 2019 26 / 27

- Event selection identifies clean sample of scattered events
- $\boldsymbol{\Sigma}$ results extracted, consistent with existing data and alternative analysis
- Σ results from APLCON analysis published in PLB, PLB 789 pp7-12, https://doi.org/10.1016/j.physletb.2018.12.026
- Initial interpretation of Σ results suggests hints of the influence of the d*(2380)

APS GHP 2019

27

27

- Preliminary analysis of $C_{X'}$ carried out
- Refinement of analysis ongoing

Stephen Kay

University of Regina

Thanks for listening, any questions?

This research was supported by: The UK Science and Technologies Funding Council (STFC), Studentship 1526286, Grants ST/L00478X/1 and ST/L005824/1 and the Natural Sciences and Engineering Research Council of Canada (NSERC), FRN: SAPIN-2016-00031

In partnership with the A2 collaboration at MAMI

Financial support for this conference presentation was provided by the Canadian Institute of Nuclear Physics

Event Selection - DOCA Method 1/2

- Distance Of Closest Approach (DOCA) method is used to calculate point where scattering event occured

- \underline{x}_i is point of closest approach, $\underline{\hat{u}}_i$ is initial unit vector of track, \underline{v}_i is initial vertex, t_i is scalar constant to be determined

$$\underline{x}_i = \underline{v}_i + t_i \underline{\hat{u}}_i$$

- DOCA occurs at point where distance between two tracks, $\Delta\underline{x},$ is minimised

- For this minimisation the following condition must be true

$$\underline{\hat{u}}_i \cdot \Delta \underline{x} = 0$$

Stephen Kay

University of Regina

APS GHP 2019 29 / 27

Stephen Kay

- From this a system of two equations with two unknowns, t_1 and t_2 can be created with solutions

$$t_1 = rac{\Delta ec{
u} \cdot [\hat{u}_1 - \hat{u}_2 (\hat{u}_1 \cdot \hat{u}_2)]}{(\hat{u}_1 \cdot \hat{u}_2)^2 - 1}$$

$$t_2 = rac{\Delta arkappa \cdot [\hat{u}_1(\hat{u}_1 \cdot \hat{u}_2) - \hat{u}_2]}{(\hat{u}_1 \cdot \hat{u}_2)^2 - 1}$$

- This allows an interaction point to be defined, this is the **P**oint **Of C**losest **A**pproach (POCA)

APS GHP 2019

30 / 27

University of Regina

Event Selection - DOCA

Z_{POCA} vs r_{POCA}

Stephen Kay

University of Regina

APS GHP 2019 31 27

Event Selection - DOCA

Stephen Kay

University of Regina APS GHP 2019

32

27

Stephen Kay

- Can extract $\boldsymbol{\Sigma}$ by forming the asymmetry

$$\frac{N^{\parallel}(\phi_p) - N^{\perp}(\phi_p)}{N^{\parallel}(\phi_p) + N^{\perp}(\phi_p)} = P_{\gamma}^{lin} \Sigma \cos(2\phi_p)$$

- i.e. $\cos(2\phi_m)$ asymmetry of amplitude $P_\gamma^{lin}\Sigma$ between two linear polarisations

- Note that this is $\ensuremath{\textbf{not}}$ a recoil observable, can look at pn events with no scattering

University of Regina APS GHP 2019 33 / 27

Linear Polarisation as a Function of E_v

Stephen Kay

University of Regina

APS GHP 2019 34 / 27

 $\Sigma(\text{Cos}\theta_{CM}) = 545 \pm 5 \text{ MeV}$

Stephen Kay

University of Regina

APS GHP 2019 35 / 27

Σ - Interpretation/Analysis

Stephen Kay

University of Regina

APS GHP 2019 36 / 27

Σ - Quadrupole Deformation

- E2/M1 Ratio given by

$$\frac{E2}{M1} = \frac{1}{2} k M_N \frac{\langle Q_{zz} \rangle_{N\Delta}}{\mu_{n\Delta}}$$
(1)
$$\frac{E2}{M1} = 2.5\%$$
(2)

APS GHP 2019

37 / 27

Eq1 - T. Watabe et al. hep-ph 9502244 , Result in Eq2 - R. Beck et al. (MAMI-A2) Phys.Rev. C61 (2000) 035204

Stephen Kay

University of Regina

Σ - Quadrupole Deformation

-
$$\gamma d
ightarrow \mathsf{d}^*$$

E2 (2^+) Transition M3 (3^+) Transition E4 (4^+) Transition

Stephen Kay University of Regina

APS GHP 2019 38 / 27

$C_{x'}$ - Energy Variation

Stephen Kay University of Regina

APS GHP 2019 39 / 27

- In a similar manner can determine $C_{x'}$ by forming the asymmetry

$$\frac{N^-(\phi_{p'}) - N^+(\phi_{p'})}{N^-(\phi_{p'}) + N^+(\phi_{p'})} = \frac{A_{eff}P_{\gamma}^{\odot}C_{x'}\sin\phi_{sc}}{1 + A_{eff}P\cos\phi_{sc}}$$

APS GHP 2019

40 / 27

- $A_{\rm eff}$ is the effective analysing power of the charge exchange interaction

-
$$|A_{eff}| \sim 0.1 - 0.2$$

$C_{x'}$ - Circular Polarisation

Stephen Kay

University of Regina

APS GHP 2019 41 / 27

$C_{x'}$ - Analysing Power

APS GHP 2019

42 / 27

 $A_y (E_n, \theta_{Sc})$

Stephen Kay

University of Regina

$C_{x'}$ - Scattered Frame

- Asymmetry is also determined for the angle $\phi_{\it sc}$

University of Regina

APS GHP 2019

<u>43</u> / 27

Stephen Kay