Overview of Open Heavy Flavor Results at RHIC and LHC

Xin Dong Lawrence Berkeley National Laboratory

Quantitative Measure of QGP

Uniqueness of Heavy Flavor Quarks

April 12-14, 2019

Key Instruments - Pixel Detector

	ALICE	ATLAS	CMS	LHCb	PHENIX	STAR
Sensor tech.	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	MAPS
Pitch size (µm²)	50x425	50x400	100x150	200x200	50x425	20x20
Radius of first layer (cm)	3.9	5.1	4.4	N/A	2.5	2.8
Thickness of first layer	1%X ₀	~1%X ₀	~1%X ₀	~1%X ₀	1%X ₀	0.4%X ₀

STAR Pixel – first application of MAPS technology in collider experiments (MAPS - Monolithic Active Pixel Sensor)

Next generation MAPS planed for future experiments: ALICE ITS upgrade, sPHENIX MVTX - to address the QGP medium properties Also for CBM, EIC detector R&D

April 12-14, 2019

•••••

PXL Detector Performance

D⁰ Meson R_{AA} in Central A+A Collisions

- significant charm quark energy loss in the QGP medium
- importance of radiative and collisional energy loss

April 12-14, 2019

rrrr

APS Topical Group on Hadronic Physics

Xin Dong / LBNL

D⁰ Total Cross Section and Radial Flow

- D⁰ p_T-integrated X-sec. suppressed in central Au+Au collisions at RHIC
- Blast-Wave thermal model fit =>
 D^o mesons kinetically freeze out earlier
 than light flavor hadrons

Strange-Charm Meson Enhancement

STAR, QM17; ALICE, JHEP 1810 (2018) 174; CMS-PAS-HIN-17-008

Λ_c Reconstruction in Heavy-Ion Collisions

STAR, QM18; ALICE, arXiv:1809.10922

Great experimental achievement in reconstructing charm baryon in heavy-ion collisions !

April 12-14, 2019

Charm Baryon Enhancement

STAR, QM18; ALICE, arXiv:1809.10922

Significant enhancement in Λ_c/D⁰ ratio in A+A collisions w.r.t PYTHIA/p+p baselines

 Coalescence hadronization

April 12-14, 2019

Total Charm Production Cross Section

Charm H	Hadron	Cross Section do/dy (µb)		
Au+Au 200 GeV (10-40%)	D^0	41 ± 1 ± 5		
	D^+	18 ± 1 ± 3		
	D_s^+	15 ± 1 ± 5		
	Λ_c^+	78 ± 13 ± 28*		
	Total	152 ± 13 ± 29		
p+p 200 GeV	Total	130 ± 30 ± 26		

- Total charm cross section follows ~ N_{bin} scaling from p+p to Au+Au
- However, charm hadro-chemistry changes considerably!

April 12-14, 2019

.....

Charm Hadron v₂ at RHIC

STAR, PRL 118 (2017) 212301; QM18

- Mass ordering at $p_T < 2$ GeV/c (hydrodynamic behavior)
- $v_2(D)$ follows the same (m_T-m₀) scaling as light hadrons below 1 GeV/c²
- Transport models including *c* diffusion in medium consistent with data

Charm Hadron v₂ at LHC

CMS, PRL 120 (2018) 202301; ALICE, PRL 120 (2018) 102301

- Significant *D*-meson v₂ at 5.02 TeV Pb+Pb collisions
- *D*⁰ v₂ follows the same trend as light hadrons at LHC

Charm Hadron v₂ and R_{AA}

April 12-14, 2019

n n n n n n

BERKELEY LAB

Current Knowledge of HQ Diffusion Coefficient

*2*π*TD_s* ~ 2-5 at T_c Next: temperature dependence? charm vs. bottom universality?

Towards Precision Determination of D_s

Rapid developments among theorists to resolve/understand trivial/non-trivial differences between different models

EMMI Rapid Reaction Task Force Jet-HQ Working Group

- R. Rapp et al., 1803.03824

- S.S. Can et al., 1809.07894

April 12-14, 2019

rrrrr

BERKELEY LAB

D⁰ v₁ - New Insight to QGP Properties

STAR, QM18

rrrr

Chatterjee & Bozek, 1804.04893

D-meson v₁ sensitive to

- T dependence of HQ diffusion coefficient
- geometry tilt of the QGP source
- Initial magnetic field (D/D v₁ difference)

April 12-14, 2019

Bottom Quark: Cleaner Measure of HQ Diffusion

Is charm quark heavy enough?

b-jet and B+ Hadron at High p⊤

• $R_{AA}(B^+) \sim R_{AA}(D) \sim R_{AA}(h)$ at $p_T > 10 \text{ GeV/c}$

mass hierarchy ? -> going to lower pT

Bottom Suppression at Low pT

- LHC: $R_{AA}(J/\psi_B) \sim R_{AA}(D_B) > R_{AA}(D)$ at $p_T < 10$ GeV/c
- RHIC: R_{AA}(e_B) < R_{AA}(e_D) at 3–8 GeV/c (2σ)

Mass hierarchy of parton energy loss

rrrr

Summary

Significant charm hadron flow -> 2πTD_s~ 2-5@T_c -> T-dependence, *c* vs. *b* universality, relation to η/s etc. Large D_s/D^o and Λ_c/D^o enhancement -> coalescence hadronization -> precise heavy baryon, relation to color confinement R_{AA}(*B*) > R_{AA}(*D*) at low p_T; ~ R_{AA}(*D*) at high p_T -> mass hierarchy of energy loss -> transition between collisional vs. elastic energy loss

APS Topical Group on Hadronic Physics

April 12-14, 2019

BERKELEY LAB

Xin Dong / LBNL

Prospective Heavy Flavor Program in Future

	2014	2015	2016	2017	2018	2019	2020	2021	2022+
RHIC	HF Phase-I		рр	CME	BES-II		HF Phase-II		
LHC	LS1	Run-2			LS2		Run-3		

Next generation MAPS pixel detectors: ITS2@ALICE, MVTX@sPHENIX Precision open bottom Heavy flavor baryons and correlations

.....

BERKELEY LAB

April 12-14, 2019

Monolithic Active Pixel Sensor (MAPS)

MAPS pixel cross-section (not to scale)

Properties:

- Standard commercial CMOS technology
- Sensor and signal processing are integrated in the same silicon wafer
- Signal is created in the low-doped epitaxial layer (typically ~10-15 µm) → MIP signal is limited to <1000 electrons
- Charge collection is mainly through thermal diffusion (~100 ns), reflective boundaries at p-well and substrate

MAPS and competition	MAPS	Hybrid Pixel	CCD
Granularity	+	-	+
Small material budget	+	-	+
Readout speed	+	++	-
Radiation tolerance	+	++	-

MAPS - particularly chosen for measuring HF hadron decays in heavy ion collisions

April 12-14, 2019

APS Topical Group on Hadronic Physics

See Xiangming Sun's talk (Sun.) for more applications

D⁰ v₂ Compared with Models

Bayesian Analysis to Extract HQ Diffusion Coefficient

Y. Xu et al, PRC 97 (2018) 014907

rrrr

BERKELEY LAB

HQ Diffusion Coefficient

R. Rapp, HF workshop@LBNL

W. Ke, Bayesian projection

What is the p- and T- dependence of HQ diffusion coefficient?

How will bottom measurement help determine HQ diffusion coefficient?

HF/sPHENIX-MVTX Workshop, LBNL

Λ_c Baryon

