On the Lepton Angular Distribution in Drell-Yan and Vector Boson Production

Jen-Chieh Peng

University of Illinois at Urbana-Champaign

8th Workshop of the APS Topical Group on Hadron Physics April 10-12, 2019

Based on the papers of Wen-Chen Chang, Evan McClellan, Oleg Teryaev and JCP (and Daniel Boer for one paper)

Phys. Lett. B758 (2016) 384;
Phys. Rev. D 96 (2017) 054020;
Phys. Lett. B789 (2019) 356;
Phys. Rev. D 99 (2019) 014032

The Drell-Yan Process

MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*

Sidney D. Drell and Tung-Mow Yan

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 (Received 25 May 1970)

On the basis of a parton model studied earlier we consider the production process of large-mass lepton pairs from hadron-hadron inelastic collisions in the limiting region, $s \rightarrow \infty$, Q^2/s finite, Q^2 and s being the squared invariant masses of the lepton pair and the two initial hadrons, respectively. General scaling properties and connections with deep inelastic electron scattering are discussed. In particular, a rapidly decreasing cross section as $Q^2/s \rightarrow 1$ is predicted as a consequence of the observed rapid falloff of the inelastic scattering structure function νW_2 near threshold.

Complementality between DIS and Drell-Yan

Both DIS and Drell-Yan process are tools to probe the quark and antiquark structure in hadrons (factorization, universality)

Angular Distribution in the "Naïve" Drell-Yan

VOLUME 25, NUMBER 5

PHYSICAL REVIEW LETTERS

3 AUGUST 1970

(3) The virtual photon will be predominantly transversely polarized if it is formed by annihilation of spin- $\frac{1}{2}$ parton-antiparton pairs. This means a distribution in the di-muon rest system varying as $(1 + \cos^2\theta)$ rather than $\sin^2\theta$ as found in Sakurai's¹⁰ vector-dominance model, where θ is the angle of the muon with respect to the timelike photon momentum. The model used in Fig.

Drell-Yan angular distribution Lepton Angular Distribution of "naïve" Drell-Yan:

$$\frac{d\sigma}{d\Omega} = \sigma_0 (1 + \lambda \cos^2 \theta); \quad \lambda = 1$$

Data from Fermilab E772

(Ann. Rev. Nucl. Part. Sci. 49 (1999) 217-253)

Drell-Yan lepton angular distributions

Θ and Φ are the decay polar and azimuthal angles of the $μ^$ in the dilepton rest-frame

Collins-Soper frame

A general expression for Drell-Yan decay angular distributions: $\left(\frac{1}{\sigma}\right)\left(\frac{d\sigma}{d\Omega}\right) = \left[\frac{3}{4\pi}\right]\left[1 + \lambda\cos^2\theta + \mu\sin2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos2\phi\right]$ Lam-Tung relation: $1 - \lambda = 2\nu$

- Reflect the spin-1/2 nature of quarks
 (analog of the Callan-Gross relation in DIS)
- Insensitive to QCD corrections

 $v \neq 0$ and v increases with p_T

7

Data from NA10 (Z. Phys. 37 (1988) 545)

Violation of the Lam-Tung relation suggests interesting new origins (Brandenburg, Nachtmann, Mirkes, Brodsky, Khoze, Müller, Eskolar, Hoyer, Väntinnen, Vogt, etc.)

Boer-Mulders function h_1^{\perp} \bigcirc – \bigcirc

 Boer pointed out that the cos2¢ dependence can be caused by the presence of the Boer-Mulders function.

• h_1^{\perp} can lead to an azimuthal dependence with $\nu \propto \left(\frac{h_1^{\perp}}{f_1}\right) \left(\frac{\overline{h_1}^{\perp}}{\overline{f_1}}\right)$

0.35

0.3

0.25

0.2

0.1

0.05

아

0.5

1.5

Boer, PRD 60 (1999) 014012

V _{0.15}

The violation of the Lam-Tung relation is due to the presence of the Boer-Mulders TMD function

The puzzle is resolved. It also leads to the first extraction of the Boer-Mulders function

2.5

Q_T [GeV]

Angular distribution data from CDF Z-production $p + \overline{p} \rightarrow e^+ + e^- + X$ at $\sqrt{s} = 1.96 \text{ TeV}$ arXiv:1103.5699 (PRL 106 (2011) 241801)

- Strong $p_T(q_T)$ dependence of λ and ν
- Lam-Tung relation $(1-\lambda = 2\nu)$ is satisfied within experimental uncertainties (TMD is not expected to be important at large p_T) 10

(arXiv:1504.03512, PL B 750 (2015) 154)

- Striking $q_T(p_T)$ dependencies for λ and ν were observed at two rapidity regions
- Is Lam-Tung relation violated?

Recent data from CMS for Z-boson production in p+p collision at 8 TeV

- Yes, the Lam-Tung relation is violated $(1-\lambda > 2\nu)!$
- Can one understand the origin of the violation of the Lam-Tung relation (It cannot be due to the Boer-Mulders function)? 12

Interpretation of the CMS Z-production results

$$\frac{d\sigma}{d\Omega} \propto (1 + \cos^2 \theta) + \frac{A_0}{2} (1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos \phi$$
$$+ \frac{A_2}{2} \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta$$
$$+ A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi$$

Questions:

- How is the above expression derived?
- Can one express $A_0 A_7$ in terms of some quantities?
- Can one understand the q_T dependence of A_0, A_1, A_2 , etc?
- Can one understand the origin of the violation of Lam-Tung relation?

$$\lambda = \frac{2 - 3A_0}{2 + A_0}; \quad \nu = \frac{2A_2}{2 + A_0}; \quad \text{L-T relation, } 1 - \lambda = 2\nu, \text{ becomes } A_0 = A_2$$

How is the angular distribution expression derived?

Lepton Plane

 \hat{y}

 \hat{z}

 θ

 \hat{x}

 θ_0

What is the lepton angular distribution with respect to the \hat{z}' (natural) axis? Ø $\frac{d\sigma}{d\Omega} \propto 1 + \frac{a\cos\theta_0}{\cos\theta_0} + \cos^2\theta_0$ \vec{p}_B Azimuthally symmetric ! How to express the angular distribution in terms of θ and ϕ ? \vec{p}_T Hadron Plane Use the following relation: $\cos\theta_0 = \cos\theta\cos\theta_1 + \sin\theta\sin\theta_1\cos(\phi - \phi_1)$

How is the angular distribution expression derived? $\frac{d\sigma}{d\Omega} \propto 1 + a\cos\theta_0 + \cos^2\theta_0$ $\cos\theta_0 = \cos\theta\cos\theta_1 + \sin\theta\sin\theta_1\cos(\phi - \phi_1)$ $\frac{d\sigma}{d\Omega} \propto (1 + \cos^2 \theta) + \frac{\sin^2 \theta_1}{2} (1 - 3\cos^2 \theta)$ Φ Lepton Plane $+(\frac{1}{2}\sin 2\theta_1\cos\phi_1)\sin 2\theta\cos\phi$ \vec{p}_B + $\left(\frac{1}{2}\sin^2\theta_1\cos 2\phi_1\right)\sin^2\theta\cos 2\phi$ θ θ_0 + $(a \sin \theta_1 \cos \phi_1) \sin \theta \cos \phi + (a \cos \theta_1) \cos \theta$ + $\left(\frac{1}{2}\sin^2\theta_1\sin 2\phi_1\right)\sin^2\theta\sin 2\phi$ \hat{y} QUATE $+(\frac{1}{2}\sin 2\theta_1\sin \phi_1)\sin 2\theta\sin \phi$ ϕ_1 Hadron Plane

 \hat{x}

 \hat{z}

+
$$(a \sin \theta_1 \sin \phi_1) \sin \theta \sin \phi$$
.

All eight angular distribution terms are obtained!

$$\frac{d\sigma}{d\Omega} \propto (1 + \cos^2 \theta) + \frac{\sin^2 \theta_1}{2} (1 - 3\cos^2 \theta) + (\frac{1}{2}\sin 2\theta_1 \cos \phi_1) \sin 2\theta \cos \phi + (\frac{1}{2}\sin^2 \theta_1 \cos 2\phi_1) \sin^2 \theta \cos 2\phi + (a\sin \theta_1 \cos \phi_1) \sin \theta \cos \phi + (a\cos \theta_1) \cos \theta + (\frac{1}{2}\sin^2 \theta_1 \sin 2\phi_1) \sin^2 \theta \sin 2\phi + (\frac{1}{2}\sin 2\theta_1 \sin \phi_1) \sin 2\theta \sin \phi + (a\sin \theta_1 \sin \phi_1) \sin \theta \sin \phi.$$

$$\frac{d\sigma}{d\Omega} \propto (1 + \cos^2 \theta) + \frac{A_0}{2} (1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos \phi + \frac{A_2}{2} \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta + A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi$$

 $A_0 - A_7$ are entirely described by θ_1, ϕ_1 and a

Angular distribution coefficients $A_0 - A_7$

 $A_0 = \langle \sin^2 \theta_1 \rangle$ $A_1 = \frac{1}{2} \left\langle \sin 2\theta_1 \cos \phi_1 \right\rangle$ $A_2 = \left\langle \sin^2 \theta_1 \cos 2\phi_1 \right\rangle$ $A_3 = a \left\langle \sin \theta_1 \cos \phi_1 \right\rangle$ $A_4 = a \left< \cos \theta_1 \right>$ $A_5 = \frac{1}{2} \left\langle \sin^2 \theta_1 \sin 2\phi_1 \right\rangle$ $A_6 = \frac{1}{2} \left\langle \sin 2\theta_1 \sin \phi_1 \right\rangle$ $A_7 = a \left\langle \sin \theta_1 \sin \phi_1 \right\rangle$

Compare with CMS data on λ (*Z* production in *p*+*p* collision at 8 TeV)

Compare with CMS data on Lam-Tung relation

Solid curves correspond to a mixture of 58.5% qG and 41.5% $q\overline{q}$ processes, and $\langle \sin^2 \theta_1 \cos 2\phi_1 \rangle / \langle \sin^2 \theta_1 \rangle = 0.77$

Violation of Lam-Tung relation is well described

Compare with CDF data (*Z* production in $p + \bar{p}$ collision at 1.96 TeV)

Solid curves correspond to a mixture of 27.5% qG and 72.5% $q\overline{q}$ processes, and $\langle \sin^2 \theta_1 \cos 2\phi_1 \rangle / \langle \sin^2 \theta_1 \rangle = 0.85$

Violation of Lam-Tung relation is not ruled out

Compare CMS data on A₁, A₃ and A₄ with calculations

Future prospects

- Extend this study to semi-inclusive DIS at high p_T (involving two hadrons and two leptons)
 - Relevant for EIC measurements
- Rotational invariance, equality, and inequality relations formed by various angular distribution coefficients
 - See preprint arXiv: 1808.04398 (Phys Lett B789 (2019) 352)
- Comparison with pQCD calculations
 - See preprint arXiv: 1811.03256 (PRD 99 (2019) 014032)
 - Lambertson and Vogelsang, PRD 93 (2016) 114013

Future prospects

On the Rotational Invariance and Non-Invariance of Lepton Angular Distributions in Drell-Yan and Quarkonium Production

Jen-Chieh Peng^a, Daniël Boer^b, Wen-Chen Chang^c, Randall Evan McClellan^{a,d}, Oleg Teryaev^e

arXiv:1808.04398 (Phys Lett B789 (2019) 352)

Quantities invariant under rotations along the y-axis (Faccioli et al.)

$$\mathcal{F} = \frac{1 + \lambda + \nu}{3 + \lambda}$$

$$\mathcal{F} = \frac{1 + \lambda_0 - 2\lambda_0 \sin^2 \theta_1 \sin^2 \phi_1}{3 + \lambda_0} = \frac{1 + \lambda_0 - 2\lambda_0 y_1^2}{3 + \lambda_0}$$

$$\tilde{\lambda} = \frac{2\lambda + 3\nu}{2 - \nu}$$

$$\tilde{\lambda} = \frac{\lambda_0 - 3\lambda_0 \sin^2 \theta_1 \sin^2 \phi_1}{1 + \lambda_0 \sin^2 \theta_1 \sin^2 \phi_1} = \frac{\lambda_0 - 3\lambda_0 y_1^2}{1 + \lambda_0 y_1^2}$$

$$\tilde{\lambda}' = \frac{(\lambda - \nu/2)^2 + 4\mu^2}{(3+\lambda)^2}$$

$$\tilde{\lambda}' = \frac{\lambda_0^2 (z_1^2 + x_1^2)^2}{(3+\lambda_0)^2} = \frac{\lambda_0^2 (1-y_1^2)^2}{(3+\lambda_0)^2} \Big|_{25}$$

Future prospects

• Extend this study to fixed-target Drell-Yan data

Lepton Angular Distributions of Fixed-target Drell-Yan Experiments in Perturbative QCD and a Geometric Approach

Wen-Chen Chang,¹ Randall Evan McClellan,^{2,3} Jen-Chieh Peng,³ and Oleg Teryaev⁴

Summary

- The lepton angular distribution coefficients $A_0 A_7$ can be described in terms of the polar and azimuthal angles of the $q - \overline{q}$ axis
- Violation of the Lam-Tung relation is due to the acoplanarity of the $q - \overline{q}$ axis and the hadron plane. This can come from order α_s^2 or higher processes or from intrinsic k_T
- This approach can be extended to fixed-target Drell-Yan and many other hard-processes
- Extraction of the Boer-Mulders function in the Drell-Yan process must take into account of the pQCD effects