On the Lepton Angular Distribution in Drell-Yan and Vector Boson Production

Jen-Chieh Peng
University of Illinois at Urbana-Champaign
$8^{\text {th }}$ Workshop of the APS Topical Group on Hadron Physics April 10-12, 2019

Based on the papers of Wen-Chen Chang, Evan McClellan, Oleg Teryaev and JCP (and Daniel Boer for one paper)

Phys. Lett. B758 (2016) 384;
Phys. Rev. D 96 (2017) 054020;
Phys. Lett. B789 (2019) 356;
Phys. Rev. D 99 (2019) 014032

The Drell-Yan Process

MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*
Sidney D. Drell and Tung-Mow Yan
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305
(Received 25 May 1970)
On the basis of a parton model studied earlier we consider the production process of large-mass lepton pairs from hadron-hadron inelastic collisions in the limiting region, $s \rightarrow \infty, Q^{2} / s$ finite, Q^{2} and s being the squared invariant masses of the lepton pair and the two initial hadrons, respectively. General scaling properties and connections with deep inelastic electron scattering are discussed. In particular, a rapidly decreasing cross section as $Q^{2} / s \rightarrow 1$ is predicted as a consequence of the observed rapid falloff of the inelastic scattering structure function νW_{2} near threshold.

$$
\left(\frac{d^{2} \sigma}{d x_{1} d x_{2}}\right)_{\text {D.Y. }}=\frac{4 \pi \alpha^{2}}{9 s x_{1} x_{2}} \sum_{a} e_{a}^{2}\left[q_{a}\left(x_{1}\right) \bar{q}_{a}\left(x_{2}\right)+\bar{q}_{a}\left(x_{1}\right) q_{a}\left(x_{2}\right)\right]
$$

Complementality between DIS and Drell-Yan

Both DIS and Drell-Yan process are tools to probe the quark and antiquark structure in hadrons (factorization, universality)

Angular Distribution in the "Naïve" Drell-Yan

(3) The virtual photon will be predominantly transversely polarized if it is formed by annihilation of spin- $\frac{1}{2}$ parton-antiparton pairs. This means a distribution in the di-muon rest system varying as $\left(1+\cos ^{2} \theta\right)$ rather than $\sin ^{2} \theta$ as found in Sakurai's ${ }^{10}$ vector-dominance model, where θ is the angle of the muon with respect to the timelike photon momentum. The model used in Fig.

Drell-Yan angular distribution

Lepton Angular Distribution of "naïve" Drell-Yan:

$$
\frac{d \sigma}{d \Omega}=\sigma_{0}\left(1+\lambda \cos ^{2} \theta\right) ; \quad \lambda=1
$$

Data from Fermilab E772
(Ann. Rev. Nucl. Part.
Sci. 49 (1999) 217-253)

Drell-Yan lepton angular distributions

Θ and Φ are the decay polar and azimuthal angles of the μ^{-} in the dilepton rest-frame

Collins-Soper frame

A general expression for Drell-Yan decay angular distributions:
$\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{v}{2} \sin ^{2} \theta \cos 2 \phi\right]$
Lam-Tung relation: $1-\lambda=2 v$

- Reflect the spin- $1 / 2$ nature of quarks
(analog of the Callan-Gross relation in DIS)
- Insensitive to QCD - corrections

Decay angular distributions in pion-induced Drell-Yan

$$
\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{v}{2} \sin ^{2} \theta \cos 2 \phi\right]
$$

Z. Phys.

37 (1988) 545

Dashed curves are from pQCD calculations
$v \neq 0$ and v increases with p_{T}

Decay angular distributions in pion-induced Drell-Yan Is the Lam-Tung relation ($1-\lambda-2 v=0$) violated?

Data from NA10 (Z. Phys. 37 (1988) 545)
Violation of the Lam-Tung relation suggests interesting new origins
(Brandenburg, Nachtmann, Mirkes, Brodsky, Khoze, Müller, Eskolar, Hoyer,Väntinnen, Vogt, etc.)

Boer-Mulders function $h_{1}{ }^{\perp} 9-6$

- Boer pointed out that the $\cos 2 \phi$ dependence can be caused by the presence of the Boer-Mulders function.
$\stackrel{\left.h_{1}^{\perp} \text { can lead to an azimuthal dependence with } v \propto\left(\frac{h_{1}^{\perp}}{f_{1}}\right)\left(\frac{\bar{h}_{1}^{\perp}}{\overline{f_{1}}}\right), ~\right)}{0.4}$

The violation of the LamTung relation is due to the presence of the BoerMulders TMD function

Boer, PRD 60 (1999) 014012
The puzzle is resolved. It also leads to the first extraction of the Boer-Mulders function

Angular distribution data from CDF Z-production

$$
\begin{gathered}
p+\bar{p} \rightarrow e^{+}+e^{-}+X \text { at } \sqrt{s}=1.96 \mathrm{TeV} \\
\text { arXiv:1103.5699 (PRL } 106 \text { (2011) 241801) }
\end{gathered}
$$

- Strong $\mathrm{p}_{\mathrm{T}}\left(\mathrm{q}_{\mathrm{T}}\right)$ dependence of λ and v
- Lam-Tung relation $(1-\lambda=2 v)$ is satisfied within experimental uncertainties (TMD is not expected to be important at large p_{T})

Recent CMS (ATLAS) data for Z-boson production in $p+p$ collision at 8 TeV

- Striking $\mathrm{q}_{\mathrm{T}}\left(\mathrm{p}_{\mathrm{T}}\right)$ dependencies for λ and v were observed at two rapidity regions
- Is Lam-Tung relation violated?

Recent data from CMS for Z-boson production in $p+p$ collision at 8 TeV

- Yes, the Lam-Tung relation is violated $(1-\lambda>2 v)$!
- Can one understand the origin of the violation of the Lam-Tung relation (It cannot be due to the Boer-Mulders function)?

Interpretation of the CMS Z-production results

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} \propto & \left(1+\cos ^{2} \theta\right)+\frac{A_{0}}{2}\left(1-3 \cos ^{2} \theta\right)+A_{1} \sin 2 \theta \cos \phi \\
& +\frac{A_{2}}{2} \sin ^{2} \theta \cos 2 \phi+A_{3} \sin \theta \cos \phi+A_{4} \cos \theta \\
& +A_{5} \sin ^{2} \theta \sin 2 \phi+A_{6} \sin 2 \theta \sin \phi+A_{7} \sin \theta \sin \phi
\end{aligned}
$$

Questions:

- How is the above expression derived?
- Can one express $A_{0}-A_{7}$ in terms of some quantities?
- Can one understand the q_{T} dependence of A_{0}, A_{1}, A_{2}, etc?
- Can one understand the origin of the violation of Lam-Tung relation?

$$
\lambda=\frac{2-3 A_{0}}{2+A_{0}} ; \quad v=\frac{2 A_{2}}{2+A_{0}} ; \quad \text { L-T relation, } 1-\lambda=2 v, \text { becomes } A_{0}=A_{2}
$$

How is the angular distribution expression derived?

What is the lepton angular distribution with respect to the \hat{z}^{\prime} (natural) axis?

$$
\frac{d \sigma}{d \Omega} \propto 1+a \cos \theta_{0}+\cos ^{2} \theta_{0}
$$

Azimuthally symmetric !

How to express the angular distribution in terms of θ and ϕ ?

Use the following relation:
$\cos \theta_{0}=\cos \theta \cos \theta_{1}+\sin \theta \sin \theta_{1} \cos \left(\phi-\phi_{1}\right)$

How is the angular distribution expression derived?

$$
\frac{d \sigma}{d \Omega} \propto 1+a \cos \theta_{0}+\cos ^{2} \theta_{0}
$$

All eight angular distribution terms are obtained!

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} \propto & \left(1+\cos ^{2} \theta\right)+\frac{\sin ^{2} \theta_{1}}{2}\left(1-3 \cos ^{2} \theta\right) \\
& +\left(\frac{1}{2} \sin 2 \theta_{1} \cos \phi_{1}\right) \sin 2 \theta \cos \phi \\
& +\left(\frac{1}{2} \sin ^{2} \theta_{1} \cos 2 \phi_{1}\right) \sin ^{2} \theta \cos 2 \phi \\
& +\left(a \sin \theta_{1} \cos \phi_{1}\right) \sin \theta \cos \phi+\left(a \cos \theta_{1}\right) \cos \theta \\
& +\left(\frac{1}{2} \sin ^{2} \theta_{1} \sin 2 \phi_{1}\right) \sin ^{2} \theta \sin 2 \phi \\
& +\left(\frac{1}{2} \sin 2 \theta_{1} \sin \phi_{1}\right) \sin 2 \theta \sin \phi \\
& +\left(a \sin \theta_{1} \sin \phi_{1}\right) \sin \theta \sin \phi
\end{aligned}
$$

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} \propto & \left(1+\cos ^{2} \theta\right)+\frac{A_{0}}{2}\left(1-3 \cos ^{2} \theta\right) \\
& +A_{1} \sin 2 \theta \cos \phi \\
& +\frac{A_{2}}{2} \sin ^{2} \theta \cos 2 \phi \\
& +A_{3} \sin \theta \cos \phi+A_{4} \cos \theta \\
& +A_{5} \sin ^{2} \theta \sin 2 \phi \\
& +A_{6} \sin 2 \theta \sin \phi \\
& +A_{7} \sin \theta \sin \phi
\end{aligned}
$$

$A_{0}-A_{1}$ are entirely described by θ_{1}, ϕ_{1} and a

Angular distribution coefficients $\mathrm{A}_{0}-\mathrm{A}_{7}$

$$
\begin{aligned}
& A_{0}=\left\langle\sin ^{2} \theta_{1}\right\rangle \\
& A_{1}=\frac{1}{2}\left\langle\sin 2 \theta_{1} \cos \phi_{1}\right\rangle \\
& A_{2}=\left\langle\sin ^{2} \theta_{1} \cos 2 \phi_{1}\right\rangle \\
& A_{3}=a\left\langle\sin \theta_{1} \cos \phi_{1}\right\rangle \\
& A_{4}=a\left\langle\cos \theta_{1}\right\rangle \\
& A_{5}=\frac{1}{2}\left\langle\sin ^{2} \theta_{1} \sin 2 \phi_{1}\right\rangle \\
& A_{6}=\frac{1}{2}\left\langle\sin 2 \theta_{1} \sin \phi_{1}\right\rangle \\
& A_{7}=a\left\langle\sin \theta_{1} \sin \phi_{1}\right\rangle
\end{aligned}
$$

What are the values of θ_{1} and ϕ_{1} at order α_{s} ?

What are the values of θ_{1} and ϕ_{1} at order α_{s} ?

Compare with CMS data on λ

(Z production in $p+p$ collision at 8 TeV)

$$
\begin{aligned}
& \lambda=\frac{2 Q^{2}-q_{T}^{2}}{2 Q^{2}+3 q_{T}^{2}} \text { for } q \bar{q} \rightarrow Z g \\
& \lambda=\frac{2 Q^{2}-5 q_{T}^{2}}{2 Q^{2}+15 q_{T}^{2}} \text { for } q G \rightarrow Z q
\end{aligned}
$$

For both processes
$\lambda=1$ at $q_{T}=0 \quad\left(\theta_{1}=0^{\circ}\right)$
$\lambda=-1 / 3$ at $q_{T}=\infty\left(\theta_{1}=90^{\circ}\right)$
Data can be well described with a mixture of $58.5 \% q G$ and $41.5 \% q \bar{q}$ processes

Compare with CMS data on Lam-Tung relation

Solid curves correspond to a mixture of $58.5 \% q G$ and 41.5\% $q \bar{q}$ processes, and $\left\langle\sin ^{2} \theta_{1} \cos 2 \phi_{1}\right\rangle /\left\langle\sin ^{2} \theta_{1}\right\rangle=0.77$

Violation of Lam-Tung relation is well described

Compare with CDF data

 (Z production in $p+\bar{p}$ collision at 1.96 TeV)

Solid curves correspond to a mixture of $27.5 \% q G$ and
$72.5 \% q \bar{q}$ processes, and $\left\langle\sin ^{2} \theta_{1} \cos 2 \phi_{1}\right\rangle /\left\langle\sin ^{2} \theta_{1}\right\rangle=0.85$

Violation of Lam-Tung relation is not ruled out

Compare CMS data on $\mathrm{A}_{1}, \mathrm{~A}_{3}$ and A_{4} with calculations

Future prospects

- Extend this study to semi-inclusive DIS at high p_{T} (involving two hadrons and two leptons)
- Relevant for EIC measurements
- Rotational invariance, equality, and inequality relations formed by various angular distribution coefficients
- See preprint arXiv: 1808.04398 (Phys Lett B789 (2019) 352)
- Comparison with pQCD calculations
- See preprint arXiv: 1811.03256 (PRD 99 (2019) 014032)
- Lambertson and Vogelsang, PRD 93 (2016) 114013

Future prospects

On the Rotational Invariance and Non-Invariance of Lepton Angular Distributions in Drell-Yan and Quarkonium Production

Jen-Chieh Peng ${ }^{\text {a }}$, Daniël Boer ${ }^{\text {b }}$, Wen-Chen Chang ${ }^{\text {c }}$, Randall Evan McClellan ${ }^{\text {a,d }}$, Oleg Teryaev ${ }^{\text {e }}$

arXiv:1808.04398 (Phys Lett B789 (2019) 352)

Quantities invariant under rotations along the y-axis (Faccioli et al.)

$$
\mathcal{F}=\frac{1+\lambda+\nu}{3+\lambda}
$$

$$
\tilde{\lambda}=\frac{2 \lambda+3 \nu}{2-\nu}
$$

$$
\tilde{\lambda}^{\prime}=\frac{(\lambda-\nu / 2)^{2}+4 \mu^{2}}{(3+\lambda)^{2}}
$$

$$
\mathcal{F}=\frac{1+\lambda_{0}-2 \lambda_{0} \sin ^{2} \theta_{1} \sin ^{2} \phi_{1}}{3+\lambda_{0}}=\frac{1+\lambda_{0}-2 \lambda_{0} y_{1}^{2}}{3+\lambda_{0}}
$$

$$
\tilde{\lambda}=\frac{\lambda_{0}-3 \lambda_{0} \sin ^{2} \theta_{1} \sin ^{2} \phi_{1}}{1+\lambda_{0} \sin ^{2} \theta_{1} \sin ^{2} \phi_{1}}=\frac{\lambda_{0}-3 \lambda_{0} y_{1}^{2}}{1+\lambda_{0} y_{1}^{2}}
$$

$$
\tilde{\lambda}^{\prime}=\frac{\lambda_{0}^{2}\left(z_{1}^{2}+x_{1}^{2}\right)^{2}}{\left(3+\lambda_{0}\right)^{2}}=\frac{\lambda_{0}^{2}\left(1-y_{1}^{2}\right)^{2}}{\left(3+\lambda_{0}\right)^{2}}
$$

Future prospects

- Extend this study to fixed-target Drell-Yan data

Lepton Angular Distributions of Fixed-target Drell-Yan Experiments in Perturbative QCD and a Geometric Approach

Wen-Chen Chang, ${ }^{1}$ Randall Evan McClellan, ${ }^{2,3}$ Jen-Chieh Peng, ${ }^{3}$ and Oleg Teryaev ${ }^{4}$
COMPASS $\pi^{-}+W$ at 190 GeV

arXiv:1811.03256v1
PRD 99 (2019) 014032

Summary

- The lepton angular distribution coefficients $A_{0}-A_{7}$ can be described in terms of the polar and azimuthal angles of the $q-\bar{q}$ axis
- Violation of the Lam-Tung relation is due to the acoplanarity of the $q-\bar{q}$ axis and the hadron plane. This can come from order α_{s}^{2} or higher processes or from intrinsic k_{T}
- This approach can be extended to fixed-target Drell-Yan and many other hard-processes
- Extraction of the Boer-Mulders function in the Drell-Yan process must take into account of the pQCD effects

