New determination of the lightest hybrid meson

Complutense University of Madrid, April 12, 2019

Topical Gorup on Hadronic Physics

1 Introduction 1.1 Motivation 1.2 Data

2 Method

3 Coupled channel

4 Future prospects

 $^{1}/_{26}$

1 Introduction

1.1 Motivation

This work: Motivation

- Only one hybrid expected.
- $J^{PC} = 1^{-+} \rightarrow \text{lightest hybrid candidate.}$

1.2 Data

Table of Content

1 Introduction 1.1 Motivation 1.2 Data

2 Method

3 Coupled channel

4 Future prospects

1 Introduction

1.2 Data

Data: COMPASS experiment

- $E_{Beam} = 190 \text{GeV} \Rightarrow \text{Peripheral production}$
- Dominated by $J^{PC} = 2^{++} \Rightarrow$ Ordinary meson.

- Asymmetry→ odd (exotic) waves.
- Dominated by $J^{PC} = 1^{-+} \Rightarrow \operatorname{non} q\bar{q}$ quantum numbers.

⁵/26

Status

• Clear $a_2(1320)$ decaying into $\eta\pi$ and $\eta'\pi$?

• Is there a clear $a'_2(1700)$?. What are its parameters?

tatuc

1.2 Data

⁷/₂₆

SLa	lus					
$\pi_1(1400) \qquad I^G(J^{PC}) = 1^-(1^{-+})$			$\pi_1(1600)$ $I^G(J^{PC}) = 1^-(1^{-+})$		PC) = 1 ⁻ (1 ⁻⁺)	
π1(1400) MASS		1354 ± 25 MeV (S = 1.8)	π1(1600) MASS		1662 ⁺⁸ MeV	
$\pi_1(1400)$ WIDTH		330 ± 35 MeV	$\pi_1(1600)$ WIDTH		241 ± 40 MeV (S = 1.4)	
Decay Modes			Decay Modes			
Mode		Fraction (Γ_i / Γ)	Mode		Fraction (Γ_i / Γ)	
Γ_1	$\eta \pi^0$	seen	Γ_1	ллл	seen	
Γ_2	$\eta \pi^-$	seen	Γ_2	$\rho^0 \pi^-$	seen	
Га	η'π		Γ_3	$f_2(1270)\pi^-$	not seen	
			Γ_4	$b_1(1235)\pi$	seen	
			Γ_5	$\eta'(958)\pi^{-}$	seen	
			Γ_6	$f_1(1285)\pi$	seen	

PDG reports 2 different resonances

Lightest Hybrid Meson

1 Introduction

1.2 Data

Partial waves

- Coupling to $\eta\pi$ much smaller than $\eta'\pi \Rightarrow$ Hybrid nature?
- Data looks suspicious above 2 GeV.

 $m(\eta^{(\prime)}\pi^{-}) \,[{\rm GeV}/c^2]$

0.8 1.2 1.6 2 2.4 2.8

Table of Content

Introduction 1.1 Motivation 1.2 Data

2 Method

3 Coupled channel

4 Future prospects

Method

- Based ON AR et al. Phys.Rev.Lett. (2019), A.Jackura et al. Phys.Lett.B (2018)
- Peripheral production \Rightarrow factorization of the pomeron \Rightarrow $Ima(s) = \rho(s)t^*(s)a(s).$ π^-
- Amplitude built around $t(s) = \frac{N(s)}{D(s)}$ method \Rightarrow $a(s) = p^2 q \frac{n(s)}{D(s)}$.

• Smooth polynomials $n(s) = \sum_j a_j w^j(s)$

Method

- N(s) and n(s) are process dependent, they have only left hand cuts.
- D(s) has a right hand cut, altogether t(s) has the correct analytic structure.

 By adding this discontinuity over the RHC one could go to the direct continuous Riemann sheet.

Single channel

 A. Jackura et al. (JPAC & COMPASS), PLB779, 464-472

• $Imt(s) = \rho(s)|t(s)|^2 \Rightarrow ImD(s) = -\rho(s)N(s)$, so that

$$D(s) = D_0(s) - \frac{s}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\rho(s')N(s')}{s'(s'-s)},$$

where $D_0(s) = c_0 - c_1 s - \frac{c_2}{c_3 - s} \rightarrow \text{CDD poles}.$

• And
$$\rho(s)N(s) = g rac{\lambda^{(2l+1)/2}(s,m_\eta^2,m_\pi^2)}{(s+s_R)^{2l+3}}$$

Single channel

- 12 parameters, $\chi^2 \approx 2$.
- Good description of both peaks, the residuals of the fits follow a Gaussian distribution.

Single channel

- Various systematics
 - 1. Effective mass of the pomeron.
 - 2. Different values for N(s) scale parameters.
 - 3. Including $\rho\pi$ channel.

• $m(a_2) = 1307 \pm 1 \pm 6 \text{ MeV}$ $\Gamma(a_2) = 112 \pm 1 \pm 8 \text{ MeV}$ • $m(a'_2) = 1720 \pm 10 \pm 60 \text{ MeV}$ $\Gamma(a'_2) = 280 \pm 10 \pm 70 \text{ MeV}$

Table of Content

Introduction 1.1 Motivation 1.2 Data

2 Method

3 Coupled channel

4 Future prospects

16/26

Coupled channel

- $\eta^{(')}\pi$ coupled channel up to 2 GeV.
- ρπ cannot be included without including big systematic contribution (Deck).
- We use a K-matrix approach with a Chew-Mandelstam phase space. $D^{J}(s)_{ki} = (K^{J}(s)^{-1})_{ki} - \frac{s}{\pi} \int_{s_{k}}^{\infty} ds' \frac{\rho(s')N_{ki}^{J}(s')}{s'(s'-s-i\varepsilon)},$ $\rho N_{ki}^{J}(s') = \delta_{ki} \frac{\lambda^{J+1/2} \left(s', m_{\eta^{(i)}}^{2}, m_{\pi}^{2}\right)}{(s'+s_{L})^{2J+1+\alpha}}$ $K_{ki}^{J}(s) = \sum_{R} \frac{g_{k}^{J,R} g_{i}^{J,R}}{m_{R}^{2}-s} + c_{ki}^{J} + d_{ki}^{J}s.$

Just 1 K-matrix pole for the P-wave.

3 Coupled channel

Coupled channel analysis

- Average of 6 parameters for each figure.
- $\chi^2 \approx 1.3$, no significant deviation for any partial wave.
- 1 K-matrix pole produces 2 different P-wave peaks.

Coupled channel analysis

• No correlation between $n^{J}(s)_{k}$ and $D^{J}(s)_{ki}$.

Numerator is smooth and process dependant.

Poles

- Statistical uncertainties calculated through bootstraping
- $m(a_2) = 1306.0 \pm 0.8 \pm 1.3$ MeV $\Gamma(a_2) = 114.4 \pm 1.6 \pm 0.0$ MeV
- $m(a_2') = 1722 \pm 15 \pm 67 \text{ MeV}$ $\Gamma(a_2') = 247 \pm 17 \pm 63 \text{ MeV}$
- All systematics (diferent LHC masses, numerator models ...) included.

Poles

Only one, isolated pole for the P-wave.

• $m(\pi_1) = 1564 \pm 24 \pm 86 \text{ MeV}$ $\Gamma(\pi_1) = 492 \pm 54 \pm 102 \text{ MeV}.$

Table of Content

Introduction 1.1 Motivation 1.2 Data

2 Method

3 Coupled channel

4 Future prospects

4 Future prospects

Future project: Hunting gluebalss with BESIII

BESIII data on gluebal "rich" experiments.

Lightest Hybrid Meson

4 Future prospects

Future project: Hunting gluebalss with BESIII

BESIII data on gluebal "rich" experiments.

Summary

- Phenomenological analysis of COMPASS data \rightarrow Analyticity and Unitarity.
- Past: JPAC and COMPASS collaboration to extract the ordinary a₂(1320) and a'₂(1700) resonances.
- This work: New method to analyze also the non-ordinary π₁. Just one resonance opposed to the PDG.
- Future: Gluex
- Future: BESIII J/ψ radiative decays

