Search for Chiral & Vortical effects at RHIC

Prithwish Tribedy

BROCKHAVEN NATIONAL LABORATORY

8th Workshop of the APS Topical Group on Hadronic Physics

10-12 April 2019 Denver, CO

physics

Office of

Science

Outline

Relativistic Heavy Ion collisions can produce large electro-magnetic fields and angular momentum \rightarrow what are the observable consequence?

I will focus on RHIC measurements and particularly from STAR on the search for Vortical & Chiral effects

200 GeV : U+U, Cu+Cu, p+Au, d+Au Ru+Ru, Zr+Zr, 7.7-200 GeV : Au+Au BES

Search for vortical effects

Angular momentum in HICs

Collisions of two relativistic nuclei generate large angular momentum (\vec{J}) \vec{J} points perpendicular to the plane of beam axis & impact parameter (\vec{b})

Angular momentum in HICs

Large angular momentum leads to local vorticity ($\vec{\omega}$) in the created medium

Global polarization due to vorticity

Angular momentum $(\vec{J}) \rightarrow Vorticity (\vec{\omega}) \rightarrow Polarization (spin orbit coupling) anti-quark (-)$

quarks anti-quarks

L: left-handed R: right-handed

#1 : Measure the direction of angular momentum

We know the beam direction, and by measuring beam fragments (BBC low \sqrt{s} & ZDC high \sqrt{s}) we know the event-by-event direction of \vec{J}

The vector joining the two beam fragments give the direction of impact parameter $\vec{b} \& \vec{J}$

ally emitting roton in spin

 \vec{p}_p

θ

A polarizationa particles proton monderstum in the A rest frame A decay parameter hake∦≸€ As with Polarization \vec{P} follow the distribution: mbdas 2act parameter $\frac{dN}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha \vec{P} \cdot \hat{p}_p^* \right) = \frac{1}{4\pi} \left(1 + \alpha P \cos \theta^* \right)$ $\alpha = 0.642 \pm 0.013$ [measured] \hat{p}_{p}^{*} is the daughter proton momentum direction *in the* Λ *frame* (note that this is opposite for Λ) $|0 < |\vec{P}| < 1$: $\vec{P} = \frac{3}{\alpha} \, \overline{\hat{p}_p^*}$

mbdas are "**\$**elf-; alyzing" \vec{p}_{π}^{*} **B**BOs BBCs Reveal polarization by preferentially emitting A polarizationa laughter proton in spin croton more sturn in the A rest frame direction H: A decay parameter Isaac Upsal – November 2018

 \vec{S}^*_{Λ}

 $1 + \alpha P$

 4π

olarization *P* follow the di

 $\frac{dN}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha \vec{P} \cdot \hat{p}_p^* \right) = \frac{1}{4\pi} \left(1 + \alpha P \cos \theta^* \right)$

Measurements by STAR

What's new : more precise measurements

Measurements in Au+Au collisions from STAR & discovery of most vortical fluid with BES-I data

Non-zero significant polarization $P_{H}(\Lambda) \& P_{H}(\Lambda) > 0$, hint of $P_{H}(\Lambda) > P_{H}(\Lambda)$

Improved significance (150 more data), non-zero polarization (<1%) observed in Au+Au 200 GeV

Opens a path for more differential studies & phenomenology

What's new : reaction plane dependence

Strongest polarization is seen for Lambdas emitted (in-plane) where the vorticity is expected to be the largest

What's new : Longitudinal polarization

What's new : Longitudinal polarization

Pressure gradient → anisotropic expansion → gradient in transverse velocity → vorticity

What's new : Longitudinal polarization

Pressure gradient → anisotropic expansion → gradient in transverse velocity → vorticity

Pressure gradient \rightarrow anisotropic expansion \sim diadient in transverse velocity \rightarrow vorticity

Pressure gradient \rightarrow anisotropic expansion $\stackrel{\checkmark}{\rightarrow}$ gradient in transverse velocity \rightarrow vorticity

Search for chiral effects

Heavy ion collisions are the right place

The Chiral Magnetic Effect

antiuark (-)

The Chiral Magnetic Effect

UL

The B-field will align the spins due to magnetic moments

The first measurements at RHIC: 200 GeV Au+Au

Charge separation perpendicular to Ψ_2 $\gamma^{+-} = \left\langle \cos(\phi_1^+ + \phi_2^- - 2\Psi_2) \right\rangle$

The first measurements at RHIC: BES data

Charge separation vanishes at the lowest energy

L. Adamczyk et al. (STAR Collaboration), PRL 113 (2014) 052302.

Expectation consistent disappearance of deconfinement / chiral symmetry restoration ?

P Tribedy, GHP@APS, April 10-12, 2019

Beyond the simple cartoon picture of CME

Fluctuations, quenching & collective expansion should be dominant

Beyond the simple cartoon picture of CME

Fluctuations, quenching & collective expansion should be dominant

Magnetic field vs. collision centrality

Effect of B-field should vanish in peripheral events

Signal should vanish in peripheral events

P Tribedy, GHP@APS, April 10-12, 2019

Why so large signal in p+A, peripheral A+A?

 $\Delta\eta$ dependence of charge separation \rightarrow di-jets dominate peripheral A+A & p+A

P Tribedy, GHP@APS, April 10-12, 2019

One more attempt using Au+Au & U+U collisions

Hydro + local charge conservation

Attempt to mimic Isobar collisions

One more attempt using Au+Au & U+U collisions

Decisive tests of Chiral Effects

Better and controlled experiment : Isobar collisions

3.1B events for both Ru+Ru, Zr+Zr collected over 8 weeks Blind analyses is ongoing by the STAR collaboration

Summary

Very exciting time for RHIC

- 1) New high statistics measurements of vortical effects, STAR upgrade with new detectors will improve measurements of Lambda polarization
- 2) Comprehensive set of measurements on CME, CMW, several new approaches to quantify CME signals but no decisive tests yet
- 3) Isobar data taking was a success, bind analysis is ongoing by STAR

Things I couldn't cover: CMW, CSE Interplay of Chiral & Vortical effects

Thank You

Recent attempts to quantify the fraction of signals

Results using a new observable to study CME looks interesting

Several estimations of possible signal fraction of CME, large uncertainties and also some model dependence is needed

Why is this so exciting ?

Baryon number violation in early universe → matter-antimatter asymmetry

Non-trivial topologies of gauge fields \rightarrow violation of P & CP

Derek Leinweber

Can we observe in the hot & dense QCD medium of heavy ion collisions ?

P Tribedy, GHP@APS, April 10-12, 2019

Another source is flowing resonance

Flowing resonances can mimic CME in mid-central A+A

One can subtract the resonance contribution if the invariant mass distribution for CME is known

Another source of background: flowing cluster

STAR experiment : Extended capabilities

Chiral Separation Effect & Chiral Magnetic Wave

The Chiral Magnetic Wave : driven by CSE

Search for the chiral magnetic wave at RHIC

L. Adamczyk et al. (STAR Collaboration) Phys. Rev. Lett. 114, 252302

Qi-Ye Shou QM 2018

Observation at RHIC is consistent to CMW expectation

$$A_{ch} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}} < 0, \ v_{2}(\pi^{+}) > v_{2}(\pi^{-})$$

$$A_{ch} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}} > 0, \ v_{2}(\pi^{+}) < v_{2}(\pi^{-})$$

Unlike LHC, at RHIC effect v₂ >> v₃

Chiral and Vortical effects

Chiral separation effect and spin polarization

CSE enhances spin polarization along global angular momentum

The connection between CSE and polarization

Global polarization of Λ and Λ studied w.r.to charge asymmetry A_{ch} $\stackrel{\circ}{}_{OO}$ $\stackrel{\circ}{}_$