The impact of η photoproduction on the resonance spectrum

$\begin{array}{ll}\text { Michael Doering } & \text { THE GEORGE Jefferson Lab }\end{array}$ UNIVERSITY
WASHINGTON, DC

8th Biennial Workshop of the APS Topical Group on Hadronic Physics (GHP2019)

April 10-12, 2019, Denver, CO

Supported by

HPC support by JSC grant jikp07

Degrees of freedom: Quarks or hadrons?

The Missing Resonance Problem

- above 1.8 GeV much more states are predicted than observed,
"Missing resonance problem"
Lattice calculation (single hadron approximation):

[Edwards et al., Phys.Rev. D84 (2011)]
- only 15 established N^{*} states (PDG 2015)
- $\sim 48 \%$ of the states have ${ }^{* * * *}$ or ${ }^{* * *}$ status (PDG 1982: 58% with ${ }^{* * * *}$ or ${ }^{* * *}$)
N^{*} spectrum in a relativistic quark model:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000
Overviews: Crede, Roberts, Rep. Prog. Phys. 76 (2013) Aznauryan et al., Int. J. Mod. Phys. E 22 (2013)

Hybrid Baryons

- QCD at low energies
- Non-perturbative dynamics

Q1: how many are there?
Q2: what are they?
\rightarrow mass generation \& confinement
\rightarrow rich spectrum of excited states (missing resonance problem)
(2-quark/3-quark, hadron molecules, exotics,...)

New results for the baryon spectrum

Quark-diquark with reduced pseudoscalar + vector diquarks: GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

- Scale Λ set by f_{π}
- Current-quark mass m_{q} set by m_{π}
- c adjusted to $\rho-a_{1}$ splitting
- η doesn't change much

Using ONLY meson-baryon degrees of freedom (no explicit quark dynamics):

Manifestly gauge invariant approach based on full BSE solution
 [Ruic, M. Mai, U.-G. Meissner PLB 704 (2011)]

Gauge invariance

- Exact unitary meson-baryon scattering amplitude T with parameters, fixed to reproduce:
- πN-partial wave S_{11} and S_{31} for $\sqrt{s}<1560 \mathrm{MeV}$

Arndt et al. (2012)

- $\pi^{-} p \rightarrow \eta n$ differential cross sections

Prakhov et al. (2005)

\rightarrow Making the "Missing resonance problem" worse ?!

Phenomenology

Resonances or not?

$\pi N \rightarrow \pi N$
EPECUR/SAID PRC 93 (2016)

[CBELSA/TAPS EPJA 53 (2017)]

Current state in η photoproduction: Multipoles from different groups

From: EtaMAID2018
[Tiator et al., EPJA54 (2018)] Analyzes:

$$
\begin{gathered}
\gamma p \rightarrow \eta p \\
\gamma p \rightarrow \eta^{\prime} p \\
\gamma n \rightarrow \eta n \\
\gamma n \rightarrow \eta^{\prime} n
\end{gathered}
$$

EtaMAID2018
BnGa [PLB 772 (2017)]
JuBo (dotted) [EPJA 54 (2018)] KSU [1804.06031]

Review: Krusche, Wilkins, [Prog.Part.Nucl.Phys. 80 (2014)]

The Julich-Bonn Dynamical Coupled-Channel Approach

e.g. EPJ A 49, 44 (2013)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions
The scattering equation in partial-wave basis

$$
\begin{aligned}
&\left\langle L^{\prime} S^{\prime} p^{\prime}\right| T_{\mu \nu}^{\prime}|L S p\rangle=\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \nu}^{\prime}|L S p\rangle+ \\
& \sum_{\gamma, L^{\prime \prime} S^{\prime \prime}} \int_{0}^{\infty} d q q^{2}\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \gamma}^{\prime \prime}\left|L^{\prime \prime} S^{\prime \prime} q\right\rangle \frac{1}{E-E_{\gamma}(q)+i \epsilon}\left\langle L^{\prime \prime} S^{\prime \prime} q\right| T_{\gamma \nu}^{\prime \prime}|L S p\rangle
\end{aligned}
$$

JuBo: Channels and Analytic Structure

Channels included:

- (2-body) unitarity and analyticity respected
- 3-body $\pi \pi N$ channel:
- parameterized effectively as $\pi \Delta, \sigma N, \rho N$
- $\pi N / \pi \pi$ subsystems fit the respective phase shifts
\square branch points move into complex plane

JuBo: Data base

[D. Roenchen, M. D., U.-G. Meißner, EPJ A 54, 110 (2018)

Reaction	Observables (\# data points)	p./channel
$\begin{aligned} & \pi N \rightarrow \pi N \\ & \pi^{-} p \rightarrow \eta n \\ & \pi^{-} p \rightarrow K^{0} \Lambda \\ & \pi^{-} p \rightarrow K^{0} \Sigma^{0} \\ & \pi^{-} p \rightarrow K^{+} \Sigma^{-} \\ & \pi^{+} p \rightarrow K^{+} \Sigma^{+} \end{aligned}$	PWA GW-SAID WI08 (ED solution) $\begin{aligned} & d \sigma / d \Omega \text { (676), } P \text { (79) } \\ & d \sigma / d \Omega \text { (814), } P(472), \beta \text { (72) } \\ & d \sigma / d \Omega \text { (470), } P(120) \\ & d \sigma / d \Omega \text { (150) } \\ & d \sigma / d \Omega \text { (1124), } P(551), \beta \text { (7) } \end{aligned}$	$\begin{array}{r} 3,760 \\ 755 \\ 1,358 \\ 590 \\ 150 \\ 1,682 \end{array}$
$\begin{aligned} & \gamma p \rightarrow \pi^{0} p \\ & \gamma p \rightarrow \pi^{+} n \\ & \gamma p \rightarrow \eta p \\ & \gamma p \rightarrow K^{+} \Lambda \end{aligned}$	$\begin{aligned} & d \sigma / d \Omega(10743), \Sigma(2927), P(768), T(1404), \Delta \sigma_{31}(140), \\ & G(393), H(225), E(467), F(397), C_{x_{\mathrm{L}}^{\prime}}(74), C_{z_{\mathrm{L}}^{\prime}}(26) \\ & d \sigma / d \Omega(5961), \Sigma(1456), P(265), T(718), \Delta \sigma_{31}(231), \\ & G(86), H(128), E(903) \\ & d \sigma / d \Omega(5680), \Sigma(403), P(7), T(144), F(144), E(129) \\ & d \sigma / d \Omega(2478), P(1612), \Sigma(459), T(383), \\ & C_{x^{\prime}}(121), C_{z^{\prime}}(123), O_{x^{\prime}}(66), O_{z^{\prime}}(66), O_{x}(314), O_{z}(314), \end{aligned}$	$\begin{aligned} & 17,564 \\ & 9,748 \\ & 6,507 \\ & 5,936 \end{aligned}$
	in total 48,050	

Resonance Couplings

Resonance states: Poles in the T-matrix on the $2^{\text {nd }}$ Riemann sheet

- $\operatorname{Re}\left(E_{0}\right)=$ "mass", $-2 \operatorname{lm}\left(E_{0}\right)=$ "width"
- elastic πN residue ($\left|r_{\pi N}\right|, \theta_{\pi N \rightarrow \pi N}$), normalized residues for inelastic channels $\left(\sqrt{\Gamma_{\pi N} \Gamma_{\mu}} / \Gamma_{\text {tot }}, \theta_{\pi N \rightarrow \mu}\right)$
- photocouplings at the pole: $\tilde{A}_{\text {pole }}^{h}=A_{\text {pole }}^{h} e^{i \vartheta^{h}}, h=1 / 2,3 / 2$

Inclusion of $\gamma p \rightarrow K^{+} \Lambda$ in JüBo ("JuBo2017-1"): 3 additional states

	$z_{0}[\mathrm{MeV}]$	$\frac{\Gamma_{\pi N}}{\Gamma_{\text {tot }}}$	$\frac{\Gamma_{\eta N}}{\Gamma_{\text {tot }}}$	$\frac{\Gamma_{K \Lambda}}{\Gamma_{\text {tot }}}$	$\frac{\Gamma_{K \Sigma}}{\Gamma_{\text {tot }}}$
$\mathrm{N}(1900) 3 / 2^{+}$	$1923-i 108.4$	1.5%	0.78%	2.99%	69.5%
$\mathrm{~N}(2060) 5 / 2^{-}$	$1924-i 100.4$	0.35%	0.15%	13.47%	27.02%
$\Delta(2190) \mathbf{1} / 2^{+}$	$2191-i 103.0$	33.12%			3.78%

- $N(1900) 3 / 2^{+}$: s-channel resonances, seen in many other analyses of kaon photoproduction (BnGa), 3 stars in PDG
- $N(2060) 5 / 2^{-}$: dynamically generated, 2 stars in PDG, seen e.g. by BnGa
- $\Delta(2190) 3 / 2^{+}$: dyn. gen., no equivalent PDG state

How to quantify the impact of new measurements?

Consider correlations of helicity couplings extracted from experiment
[D. Sadasivan,M.D., M. Mai, in preparation]

Results from analysis of world data of η photoproduction

[D. Sadasivan,M.D., M. Mai, in preparation]

Here $A=|A| e^{i \phi}$ defined at the resonance pole.

Bulk properties of uncertainties from different data sets

Helicity Coupling	All	No E	No F	No T	No Σ
Number of Data Points	6425	6369	6281	6281	6022
Generalized Variance	0.0494	0.0521	0.1288	0.1239	6.664
$\sqrt{\operatorname{Tr} C}$	10.4965	10.51	12.00	11.423	19.85
Multicollinearity	8.173	8.203	9.280	9.5323	10.371
Condition number	133.61	132.10	173.664	164.1	322.66

C=Covariance Matrix

Generalized Variance
= Det[C] ~Volume of the Error Ellipsoid

Helicity Coupling	No artificial data	Cx	Cz	Cx and Cz
Number of Data Points	6425	6569	6569	6713
Generalized Variance	0.0494	0.03758	0.0362	$\underline{0.0132}$
$\sqrt{\operatorname{Tr} C}$	10.4965	10.72	10.487	10.102
Multicollinearity	8.173	7.599	6.770	6.157
Condition number	133.61	112.47	109.69	107.683

- Allows to trace quantitatively the impact of data sets and observables
- Helpful in design of new measurements
- Correlations allow to assess quality of theory predictions

Resonances and other structures

CLAS/JuBo (M. D., D. Rönchen), Phys.Lett. B755 (2016)

- First-ever measurement of observable E in η photoproduction, enabled through the CLAS FROST target

Is this a new narrow baryonic resonance?
\rightarrow Conventional explanation in terms of interference effects.

Summary

- Complicated phenomenology of excited baryons through coupled-channel and three-body effects
\rightarrow Conceptual progress needed to connect to lattice QCD calculations.
- η photoproduction ideally suitable to study excited baryons
\rightarrow Isospin filter, good channel for missing resonances
- Global analyses of pion and photon-induced reactions
\rightarrow Jülich-Bonn analysis confirms new states in analysis of photoproduction
- Model selection techniques to extract minimal spectrum of excited baryons

Spare slides

Spectrum of N* resonances

- Most new resonances by Bonn-Gatchina group; [Slide: V. Crede/Nstar 2017, slight modifications]
- Many from kaon photoproduction [See also: Crede, Roberts, Rep. Prog. Phys. 76 (2013)]

Spectrum of N* resonances

- Most new resonances by Bonn-Gatchina group; [Slide: V. Crede/Nstar 2017, slight modifications]
- Many from kaon photoproduction
[See also: Crede, Roberts, Rep. Prog. Phys. 76 (2013)]

$$
S=\mathbb{1}+i T
$$

Unitarity: $S S^{\dagger}=1 \Leftrightarrow-i\left(T-T^{\dagger}\right)=T T^{\dagger}$

- 3-body unitarity:
discontinuities from t-channel exchanges
\rightarrow Meson exchange from requirements of the S-matrix

Other cuts

- to approximate left-hand cut \rightarrow Baryon u-channel exchange
- σ, ρ exchanges from crossing plus analytic continuation.

$\vec{q}=\overrightarrow{p_{1}}-\overrightarrow{p_{3}}$

$\vec{q}=\vec{q}_{1}-\vec{p}_{4}$

$$
\vec{q}=\vec{p}_{1}+\vec{p}_{2}=0
$$

Visible influence of new states

$N(1900) 3 / 2^{+}, N(2060) 5 / 2^{-}$in $\sigma_{\text {tot }}$ in $\pi^{-} p \rightarrow K^{+} \Sigma^{-}$

Amplitude parametrization

Disp. rel. (Aznauryan, Burkert,..) KT equations, t-channel analyticity; Restoration of crossing symmetry via dispersion relations (Aitchison, Kubis, Szczepaniak, Tiator)

Integral-equation implementation of amplitude

- Giessen

【
$T=V+V G T$,
Genuine Resonance:

Unitarity loop G:

- Re G $\rightarrow 0$: K-matrix
- V point-like: SAID Integral equation: Julich-Bonn, ANL-Osaka

Amplitude parametrization

- Giessen

Disp. rel. (Aznauryan, Burkert,..) KT equations, t-channel analyticity; Restoration of crossing symmetry via dispersion relations (Aitchison, Kubis, Szczepaniak, Tiator, ...)

Impact of data

CBELSA/TAPS

Impact of new data

Data: CBELSA/TAPS Collaboration (T: Hartmann et al. PLB 748, 212 (2015) , E: Gottschall et al. PRL 112,
4012003 (2014), G: Thiel et al. PRL 109, 102001 (2012), Thiel et al. arXiv:1604.02922)
Predictions: black solid lines: BnGa, red dash-dotted: SAID, blue dashed: JüBo, green dotted: MAID

Impact of new data

Data: CBELSA/TAPS Collaboration (T: Hartmann et al. PLB 748, 212 (2015) , E: Gottschall et al. PRL 112, 012003 (2014), G: Thiel et al. PRL 109, 102001 (2012), Thiel et al. arXiv:1604.02922)

Fits: black solid lines: BnGa, red dash-dotted: SAID, blue dashed: JüBo

Impact of new data

- Multipole solutions approach each other
- Remaining discrepancies

Julich-Bonn, BnGa, SAID
$\operatorname{var}(1,2)=\frac{1}{2} \sum_{i=1}^{16}\left(\mathcal{M}_{1}(i)-\mathcal{M}_{2}(i)\right)\left(\mathcal{M}_{1}^{*}(i)-\mathcal{M}_{2}^{*}(i)\right) .(31)$

Fit to world data on $\pi N \rightarrow \pi N, \eta N, K \Lambda, K \Sigma$ ($\sim 10^{5} \exp$. points) [Rönchen, M.D. et al., EPJA 49 (2013)]

Selected results for $\pi^{-} p \rightarrow K^{0} \Lambda$ [almost complete experiment]

Re-measuring hadron-induced reactions

Fits: D. Rönchen, M.D., et al., EPJ A49 (2013)

\rightarrow Physics Opportunities with meson beams, Briscoe, M.D., Haberzettl, Manley, Naruki, Strakovsky, Swanson, EPJ A51 (2015)

Toward Data-driven Analyses

[M.D., Revier, Rönchen, Workman, arXiv:1603.07265, PRC 2016]

- Multi-channel analyses to detect faint resonance signals
- All groups use GW/SAID partial waves for $\pi N \rightarrow \pi N$
- The chi-square obtained in fits to single-energy solutions is not related to chi-square of a fit to data \rightarrow Statistical interpretation of resonance signals difficult.
- Provide online covariance matrices etc. to allow other groups to perform correlated chi-square fits.

Slight adaptation of their code allows other groups to obtain a χ^{2} (almost) as if they fitted to $\pi N \rightarrow \pi N$ directly.

$$
\begin{aligned}
& \begin{aligned}
\chi^{2}(\mathbf{A}) & =\chi^{2}(\hat{\mathbf{A}})+(\mathbf{A}-\hat{\mathbf{A}})^{T} \hat{\Sigma}^{-1}(\mathbf{A}-\hat{\mathbf{A}}) \\
& +\mathcal{O}(\mathbf{A}-\hat{\mathbf{A}})^{3}
\end{aligned} \\
& \begin{array}{l}
\text { Covariance matrices etc. can be downloaded } \\
\text { on the SAID and JPAC web pages. }
\end{array} \\
& \hline
\end{aligned}
$$

Amplitude reconstruction from complete experiments and

 truncated partial-wave expansions[Workman, Tiator, Wunderlich, M.D., H. Haberzettl, PRC (2017)]

How do complete experiment and truncated partial wave complete experiment compare. Depending on which partial-wave content is admitted in the amplitude?

Set	Included Partial Waves	CEA	TPWA	Complete Sets for TPWA
1	$L=0\left(E_{0+}\right)$	1(1)	1(1)1	$I[1]$
2	$J=1 / 2\left(E_{0+}, M_{1-}\right)$	4(4)	$\begin{aligned} & 4(4) 1 \\ & 4(3) 2 \end{aligned}$	$\begin{aligned} & I[1], \check{P}[1], \check{C}_{x}[1], \check{C}_{z}[1] \\ & I[2], \check{P}[1], \check{C}_{x}[1] \end{aligned}$
3	$L=0,1\left(E_{0+}, M_{1-}, E_{1+}\right)$	6(6)	$\begin{aligned} & 6(6) 1 \\ & 6(4) 2 \\ & 6(3) 3 \end{aligned}$	$\begin{aligned} & I[1], \check{\Sigma}[1], \check{T}[1], \check{P}[1], \check{F}[1], \check{G}[1] \\ & I[2], \check{\Sigma}[1], \check{T}[2], \check{P}[1] \\ & I[3], \check{\Sigma}[1], \check{T}[2] \end{aligned}$
4	$L=0,1\left(E_{0+}, M_{1-}, E_{1+}, M_{1+}\right)$ full set of $4 S, P$ wave multipoles	\dagger	$\begin{aligned} & 8(5) 2 \\ & 8(4) 3 \\ & \hline \end{aligned}$	TPWA at 1 angle not possible $\begin{aligned} & I[2], \check{\Sigma}[1], \check{T}[2], \check{P}[2], \check{F}[1] \\ & I[3], \check{\Sigma}[1], \check{F}[2], \check{H}[2] \end{aligned}$
5	$L=0,1,2\left(E_{0+}, M_{1-}, E_{1+}, E_{2-}\right)$	8(8)	$\begin{aligned} & 8(8) 1 \\ & 8(4) 2 \\ & 8(3) 3 \end{aligned}$	$\begin{aligned} & I[1], \check{\Sigma}[1], \check{T}[1], \check{P}[1], \check{F}[1], \check{G}[1], \check{C}_{x}[1], \check{O}_{x}[1] \\ & I[2], \check{\Sigma}[2], \check{T}[2], \check{P}[2] \\ & I[3], \check{\Sigma}[2], \check{T}[3] \end{aligned}$
6	$J \leq 3 / 2\left(E_{0+}, M_{1-}, E_{1+}, M_{1+}, E_{2-}, M_{2-}\right)$	\dagger	$\begin{aligned} & 12(5) 3 \\ & 12(4) 4 \end{aligned}$	TPWA at 1 or 2 angles not possible $\begin{aligned} & I[3], \check{\Sigma}[2], \check{T}[3], \check{P}[2], \check{F}[2] \\ & I[4], \check{\Sigma}[2], \check{F}[3], \check{H}[3] \end{aligned}$
7	$L=0,1,2\left(E_{0+}, \ldots, M_{2+}\right)$ full set of $8 S, P, D$ wave multipoles	\dagger	$\begin{array}{\|l} \left\lvert\, \begin{array}{l} 16(6) 3 \\ 16(5) 4 \end{array}\right. \\ \hline 16(4) 5 \end{array}$	$\begin{aligned} & \text { TPWA at } 1 \text { or } 2 \text { angles not possible } \\ & I[3], \check{\Sigma}[3], \check{T}[3], \check{P}[3], \check{F}[3], \check{G}[1] \\ & I[4], \check{\Sigma}[3], \check{T}[3], \check{P}[3], \check{F}[3] \\ & \hline I[5], \check{\Sigma}[3], \check{F}[4], \check{H}[4] \quad \text { Four are } \end{aligned}$

Order: \# of different measurements, \# of different observables \# of different angles

Data: Akondi et al. (A2 at MAMI) PRL 113, 102001 (2014)

-=-=- prediction
fit

Beam	Target	Recoil
0	$+y$	0
0	$-y$	0

Beam	Target	Recoil
+1	$+x$	0
-1	$+x$	0

