# The impact of η photoproduction on the resonance spectrum

Michael Doering





8th Biennial Workshop of the APS Topical Group on Hadronic Physics (GHP2019)

April 10-12, 2019, Denver, CO

Supported by







HPC support by JSC grant jikp07

Messier 87



### The Missing Resonance Problem

 above 1.8 GeV much more states are predicted than observed,

"Missing resonance problem"

Lattice calculation (single hadron approximation):



[Edwards et al., Phys.Rev. D84 (2011)]

- only 15 established  $N^*$  states (PDG 2015)
- $\bullet$   $\sim$  48% of the states have \*\*\*\* or \*\*\* status (PDG 1982: 58% with \*\*\*\* or \*\*\* )

 $N^*$  spectrum in a relativistic quark model:



Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

**Overviews**: Crede, Roberts, Rep. Prog. Phys. 76 (2013) Aznauryan *et al.*, Int. J. Mod. Phys. E 22 (2013)

## **Hybrid Baryons**





J.J. Dudek and R.G. Edwards, PRD85 (2012)

Rel. quark model: Aznauryan (2007) Dyson-Schwinger: Wilson, Cloet, Chang, C. D. Roberts (2012)

[source: Int. J. Mod. Phys. (2013)]

Hybrid states: same J<sup>P</sup> values as q<sup>3</sup> baryons. Identification? Measure Q<sup>2</sup> dependence of electro-couplings (**CLAS 12**)



Talk by Maxim Mai tomorrow, Row H, 5:05pm

[parts of slide courtesy of V. Burkert]

- **QCD** at low energies
- Non-perturbative dynamics

**Q1**: how many are there?

Q2: what are they?

- → mass generation & confinement
- → rich spectrum of excited states
   (missing resonance problem)
   (2-quark/3-quark, hadron molecules, exotics,...)



### New results for the baryon spectrum

Quark-diquark with reduced pseudoscalar + vector diquarks: GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

#### 2.0 $\Delta(1940)$ $\Delta(1920)$ N(1900) N(1880) $\Delta(1910)$ $\Delta(1900)$ N(1875) 1.8 N(1720) N(1710) $\Delta(1700)$ N(1700) N(1650) $\Delta$ (1620) $\Delta(1600)$ 1.6 N(1535) N(1520) M(1440) **PDG** — ∆(1232) 1.2 calc. 1.0 N(940)



M [GeV]

η doesn't change much

• c adjusted to  $\rho$ - $a_1$  splitting

Current-quark mass  $m_q$  set by  $m_{\pi}$ 

Scale  $\Lambda$  set by  $f_{\pi}$ 

Using ONLY meson-baryon degrees of freedom (no explicit quark dynamics):

## Manifestly gauge invariant approach based on full BSE solution [Ruic, M. Mai, U.-G. Meissner PLB 704 (2011)]

Gauge invariance

- ► Exact unitary meson-baryon scattering amplitude T with parameters, fixed to reproduce:
  - ▶  $\pi N$ -partial wave  $S_{11}$  and  $S_{31}$  for  $\sqrt{s} < 1560$  MeV

Arndt et al. (2012)

▶  $\pi^- p \to \eta n$  differential cross sections





→ Making the "Missing resonance problem" worse ?!

Phenomenology

### Resonances or not?



## Current state in $\eta$ photoproduction: Multipoles from different groups



From: **EtaMAID2018** [Tiator et al., EPJA54 (2018)] Analyzes:

#### EtaMAID2018

BnGa [PLB 772 (2017)]
<u>JuBo</u> (dotted) [EPJA 54 (2018)]
<u>KSU [1804.06031]</u>

Review: Krusche, Wilkins, [Prog.Part.Nucl.Phys. 80 (2014)]

| Observable         | σ        | Σ        | Т        | Р | E        | F        | G        | Н        | T <sub>x</sub> | T <sub>z</sub>   | L <sub>x</sub>  | L <sub>z</sub> | O <sub>x</sub> | O <sub>z</sub> | C <sub>x</sub>     | C <sub>z</sub>     |
|--------------------|----------|----------|----------|---|----------|----------|----------|----------|----------------|------------------|-----------------|----------------|----------------|----------------|--------------------|--------------------|
|                    |          |          |          |   |          |          |          |          | Dh             | we Lo            | ++ D7           | 71 (2          | 017)           |                |                    |                    |
| pπ <sup>0</sup>    | ~        | ~        | 1        |   | <b>/</b> | <b>√</b> | <b>✓</b> | <b>/</b> |                | iys.Le<br>iys.Le |                 |                |                |                | cla                | 3                  |
| nπ <sup>+</sup>    | ~        | ~        | ✓        |   | ~        | ✓        | ✓        | ✓        |                | iys.Le           | :II. D <i>i</i> | 55 (2          | OTO            |                | CEBAF Large Accept | tance Spectrometer |
| рη                 | ~        | 1        | 1        |   | ~        | <b>✓</b> | 1        | 1        |                |                  |                 | үр-            | <b>→</b> X     |                |                    |                    |
| ρη'                | <b>V</b> | 1        | 1        |   | 1        | <b>✓</b> | ✓        | 1        |                |                  |                 |                |                |                |                    |                    |
| K⁺Λ                | <b>V</b> | <b>V</b> | <b>V</b> | ~ | 1        | ✓        | ✓        | <b>✓</b> | 1              | <b>✓</b>         | <b>✓</b>        | 1              | <b>'</b>       | ~              | <b>V</b>           | ~                  |
| Κ+Σ0               | ~        | <b>V</b> | ~        | ~ | 1        | ✓        | ✓        | ✓        | 1              | <b>✓</b>         | 1               | ✓              | <b>V</b>       | V              | <b>V</b>           | ~                  |
| ρω/φ               | ~        | 1        | 1        |   | 1        | 1        | 1        | 1        |                |                  | (               | ✓ SDI          | ME             |                |                    |                    |
| K+*Λ               | ~        |          |          | ~ |          |          |          |          |                |                  |                 | SDM            | E              |                |                    |                    |
| Κ <sup>0*</sup> Σ+ | ~        | 1        |          |   |          |          |          |          |                |                  | 1               | 1              |                | SD             | ME                 |                    |
|                    |          |          |          |   |          |          |          |          |                |                  |                 |                |                |                |                    |                    |
| ρπ⁻                | <b>/</b> | <b>'</b> |          |   | ~        | 1        | 1        |          |                |                  |                 | γn-            | <b>&gt;</b> X  |                |                    |                    |
| pρ·                | 1        | 1        |          |   | 1        | 1        | 1        |          |                |                  | . l             |                |                |                |                    |                    |
| Κ-Σ+               | <b>/</b> | 1        |          |   | 1        | <b>✓</b> | <b>✓</b> |          |                |                  |                 |                |                |                |                    |                    |
| K <sub>0</sub> Λ   | ~        | 1        | 1        | 1 | 1        | 1        | 1        |          | 1              | 1                | 1               | 1              | 1              | 1              | 1                  | 1                  |
| $K_0\Sigma_0$      | 1        | 1        | 1        | 1 | 1        | 1        | 1        |          | 1              | 1                | 1               | 1              | 1              | 1              | 1                  | 1                  |
| $K^{0*}\Sigma^0$   | 1        | 1        |          |   |          |          |          |          |                |                  | 1               | 1              |                |                |                    |                    |

### The Julich-Bonn Dynamical Coupled-Channel Approach

e.g. EPJ A 49, 44 (2013)

#### Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$\langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle +$$
 
$$\sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle$$



- genuine resonance states
- t- and u-channel:  $T^{NP}$ dynamical generation of poles partial waves strongly correlated

## JuBo: Channels and Analytic Structure

#### Channels included:



- (2-body) unitarity and analyticity respected
- 3-body  $\pi\pi N$  channel:
  - parameterized effectively as  $\pi\Delta$ ,  $\sigma N$ ,  $\rho N$
  - $\pi N/\pi\pi$  subsystems fit the respective phase shifts
  - branch points move into complex plane



## JuBo: Data base [D. Roenchen, M. D., U.-G. Meißner, EPJ A 54, 110 (2018)

| Reaction                      | Observables (# data points)                                                                   | p./channel |
|-------------------------------|-----------------------------------------------------------------------------------------------|------------|
| $\pi N \to \pi N$             | PWA GW-SAID WI08 (ED solution)                                                                | 3,760      |
| $\pi^- p \to \eta n$          | $d\sigma/d\Omega$ (676), $P$ (79)                                                             | 755        |
| $\pi^- \rho \to K^0 \Lambda$  | $d\sigma/d\Omega$ (814), $P$ (472), $\beta$ (72)                                              | 1,358      |
| $\pi^- \rho \to K^0 \Sigma^0$ | $d\sigma/d\Omega$ (470), $P$ (120)                                                            | 590        |
| $\pi^- p \to K^+ \Sigma^-$    | $d\sigma/d\Omega$ (150)                                                                       | 150        |
| $\pi^+ p \to K^+ \Sigma^+$    | $d\sigma/d\Omega$ (1124), $P$ (551) , $eta$ (7)                                               | 1,682      |
| $\gamma p \to \pi^0 p$        | $d\sigma/d\Omega$ (10743), $\Sigma$ (2927), $P$ (768), $T$ (1404), $\Delta\sigma_{31}$ (140), |            |
|                               | $G$ (393), $H$ (225), $E$ (467), $F$ (397), $C_{x_{1}'}$ (74), $C_{z_{1}'}$ (26)              | 17,564     |
| $\gamma p \to \pi^+ n$        | $d\sigma/d\Omega$ (5961), $\Sigma$ (1456), $P$ (265), $T$ (718), $\Delta\sigma_{31}$ (231),   |            |
|                               | G (86), H (128), E (903)                                                                      | 9,748      |
| $\gamma p 	o \eta p$          | $d\sigma/d\Omega$ (5680), $\Sigma$ (403), $P$ (7), $T$ (144), $F$ (144), $E$ (129)            | 6,507      |
| $\gamma p \to K^+ \Lambda$    | $d\sigma/d\Omega$ (2478), $P$ (1612), $\Sigma$ (459), $T$ (383),                              |            |
|                               | $C_{x'}$ (121), $C_{z'}$ (123), $O_{x'}$ (66), $O_{z'}$ (66), $O_x$ (314), $O_z$ (314),       | 5,936      |
|                               |                                                                                               |            |
|                               | in total                                                                                      | 48,050     |

### Resonance Couplings

Resonance states: Poles in the T-matrix on the  $2^{nd}$  Riemann sheet



- $Re(E_0) = \text{``mass''}, -2Im(E_0) = \text{``width''}$
- elastic  $\pi N$  residue  $(|r_{\pi N}|, \theta_{\pi N \to \pi N})$ , normalized residues for inelastic channels  $(\sqrt{\Gamma_{\pi N}\Gamma_{\mu}}/\Gamma_{\rm tot}, \theta_{\pi N \to \mu})$
- photocouplings at the pole:  $\tilde{A}^h_{pole} = A^h_{pole} e^{i\vartheta^h}$ , h = 1/2, 3/2

Inclusion of  $\gamma p \to K^+ \Lambda$  in JüBo ("JuBo2017-1"): 3 additional states

|                         | $z_0$ [MeV]           | $rac{\Gamma_{\pi N}}{\Gamma_{ m tot}}$ | $rac{\Gamma_{oldsymbol{\eta}N}}{\Gamma_{	ext{tot}}}$ | $rac{\Gamma_{\mathcal{K}\Lambda}}{\Gamma_{tot}}$ | $\frac{\Gamma_{K\Sigma}}{\Gamma_{\mathrm{tot}}}$ |
|-------------------------|-----------------------|-----------------------------------------|-------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|
| N(1900)3/2+             | 1923 — <i>i</i> 108.4 | 1.5 %                                   | 0.78 %                                                | 2.99 %                                            | 69.5 %                                           |
| N(2060)5/2 <sup>-</sup> | 1924 — <i>i</i> 100.4 | 0.35 %                                  | 0.15 %                                                | 13.47 %                                           | 27.02 %                                          |
| $\Delta(2190)$ :1/2+    | 2191 — <i>i</i> 103.0 | 33.12 %                                 |                                                       |                                                   | 3.78 %                                           |

- N(1900)3/2+: s-channel resonances, seen in many other analyses of kaon photoproduction (BnGa), 3 stars in PDG
- N(2060)5/2<sup>-</sup>: dynamically generated, 2 stars in PDG, seen e.g. by BnGa
- $\Delta(2190)3/2^+$ : dyn. gen., no equivalent PDG state

### How to quantify the impact of new measurements?

Consider correlations of helicity couplings extracted from experiment

[D. Sadasivan, M.D., M. Mai, in preparation]



#### Results from analysis of world data of $\eta$ photoproduction

[D. Sadasivan, M.D., M. Mai, in preparation]

Here  $A = |A|e^{i\phi}$  defined at the resonance pole.



**Correlation matrix** 



#### Bulk properties of uncertainties from different data sets

| Helicity Coupling     | All     | No E   | No F    | No T   | Νο Σ   |
|-----------------------|---------|--------|---------|--------|--------|
| Number of Data Points | 6425    | 6369   | 6281    | 6281   | 6022   |
| Generalized Variance  | 0.0494  | 0.0521 | 0.1288  | 0.1239 | 6.664  |
| $\sqrt{\text{Tr }C}$  | 10.4965 | 10.51  | 12.00   | 11.423 | 19.85  |
| Multicollinearity     | 8.173   | 8.203  | 9.280   | 9.5323 | 10.371 |
| Condition number      | 133.61  | 132.10 | 173.664 | 164.1  | 322.66 |

C=Covariance Matrix

Generalized Variance = Det[C] ~Volume of the Error Ellipsoid

| Helicity Coupling           | No artificial data | $\mathbf{C}\mathbf{x}$ | Cz     | Cx and Cz |
|-----------------------------|--------------------|------------------------|--------|-----------|
| Number of Data Points       | 6425               | 6569                   | 6569   | 6713      |
| Generalized Variance        | 0.0494             | 0.03758                | 0.0362 | 0.0132    |
| $\sqrt{\operatorname{Tr}C}$ | 10.4965            | 10.72                  | 10.487 | 10.102    |
| Multicollinearity           | 8.173              | 7.599                  | 6.770  | 6.157     |
| Condition number            | 133.61             | 112.47                 | 109.69 | 107.683   |



- Allows to trace quantitatively the impact of data sets and observables
- Helpful in design of new measurements
- Correlations allow to assess quality of theory predictions

### Resonances and other structures

CLAS/JuBo (M. D., D. Rönchen), Phys.Lett. B755 (2016)

First-ever measurement of observable E in  $\eta$  photoproduction, enabled through the CLAS <u>FROST</u> target







Is this a new narrow baryonic resonance?

→ Conventional explanation in terms of interference effects.

### Resonance selection $(K^-p \to K\Xi)$

$$(K^-p \to K\Xi)$$



resonances

6450

6400

6300

6250

0

2

<u>의</u> 6350

[M.D., J. Landay, H. Haberzettl, M. Mai, K. Nakayama, PRC 2018]

- Ten partial waves; 10 resonances in Ansatz
- Penalty:  $\chi^2 = \chi^2_{\rm stat.} + P$

$$P(\lambda) = \lambda^5 \sum_{i=0}^{9} \int_{m_K + m_{\Xi}}^{3200} \frac{\partial^2}{\partial W^2} \left( |-x_i e^{i\Phi_i} \frac{\Gamma_i}{2(W - M_i + i\frac{\Gamma_i}{2})}|^2 \right) dW$$

LASSO picks the 4 correct ones



### Summary

- Complicated phenomenology of excited baryons through coupled-channel and three-body effects
  - → Conceptual progress needed to connect to lattice QCD calculations.
- η photoproduction ideally suitable to study excited baryons
  - → Isospin filter, good channel for missing resonances
- Global analyses of pion and photon-induced reactions
  - → Jülich-Bonn analysis confirms new states in analysis of photoproduction
- Model selection techniques to extract minimal spectrum of excited baryons

Spare slides



- Most new resonances by Bonn-Gatchina group; [Slide: V. Crede/Nstar 2017, slight modifications]
- Many from kaon photoproduction

[See also: Crede, Roberts, Rep. Prog. Phys. 76 (2013)]



- Most new resonances by Bonn-Gatchina group; [Slide: V. Crede/Nstar 2017, slight modifications]
- Many from kaon photoproduction

[See also: Crede, Roberts, Rep. Prog. Phys. 76 (2013)]

$$S = 1 + iT$$

#### Unitarity: $SS^{\dagger} = 1 \Leftrightarrow -i(T - T^{\dagger}) = T T^{\dagger}$

- 3-body unitarity:
   discontinuities from t-channel exchanges
  - $\rightarrow$  Meson exchange from requirements of the S-matrix



#### Other cuts

- ullet to approximate left-hand cut o Baryon u-channel exchange
- ullet  $\sigma,\ 
  ho$  exchanges from crossing plus analytic continuation.





#### Visible influence of new states







Impact of data

### Impact of new data

EPJA 52, 284 (2016)



Data: CBELSA/TAPS Collaboration (*T*: Hartmann et al. PLB 748, 212 (2015) , *E*: Gottschall et al. PRL 112, 012003 (2014), *G*: Thiel et al. PRL 109, 102001 (2012), Thiel et al. arXiv:1604.02922)

Predictions: black solid lines: BnGa, red dash-dotted: SAID, blue dashed: JüBo, green dotted: MAID



Data: CBELSA/TAPS Collaboration (*T*: Hartmann et al. PLB 748, 212 (2015) , *E*: Gottschall et al. PRL 112, 012003 (2014), *G*: Thiel et al. PRL 109, 102001 (2012), Thiel et al. arXiv:1604.02922)

Fits: black solid lines: BnGa, red dash-dotted: SAID, blue dashed: JüBo



- Multipole solutions approach each other
- Remaining discrepancies

Julich-Bonn, BnGa, SAID

$$var(1,2) = \frac{1}{2} \sum_{i=1}^{16} (\mathcal{M}_1(i) - \mathcal{M}_2(i)) (\mathcal{M}_1^*(i) - \mathcal{M}_2^*(i)). (31)$$



Selected results for  $\pi^- p \to K^0 \Lambda$  [almost complete experiment]



### Re-measuring hadron-induced reactions

Fits: D. Rönchen, M.D., et al., EPJ A**49** (2013)



→ Physics Opportunities with meson beams, Briscoe, M.D., Haberzettl, Manley, Naruki, Strakovsky, Swanson, EPJ A**51** (2015)

### Toward Data-driven Analyses

[M.D., Revier, Rönchen, Workman, arXiv:1603.07265, PRC 2016]

- Multi-channel analyses to detect faint resonance signals
- All groups use GW/SAID partial waves for  $\pi N \to \pi N$ 
  - The chi-square obtained in fits to single-energy solutions is not related to chi-square of a fit to data → Statistical interpretation of resonance signals difficult.
- Provide online covariance matrices etc. to allow other groups to perform *correlated chi-square* fits.



Slight adaptation of their code allows other groups to obtain a  $\chi^2$  (almost) as if they fitted to  $\pi N \to \pi N$  directly.

$$\chi^{2}(\mathbf{A}) = \chi^{2}(\hat{\mathbf{A}}) + (\mathbf{A} - \hat{\mathbf{A}})^{T} \hat{\Sigma}^{-1} (\mathbf{A} - \hat{\mathbf{A}})$$
$$+ \mathcal{O}(\mathbf{A} - \hat{\mathbf{A}})^{3}$$

Covariance matrices etc. can be downloaded on the SAID and JPAC web pages.

## Amplitude reconstruction from complete experiments and truncated partial-wave expansions

[Workman, Tiator, Wunderlich, M.D., H. Haberzettl, PRC (2017)]

How do complete experiment and truncated partial wave complete experiment compare. Depending on which partial-wave content is admitted in the amplitude?

| Set | Included Partial Waves                                         | CEA  | TPWA   | Complete Sets for TPWA                                                                                         |
|-----|----------------------------------------------------------------|------|--------|----------------------------------------------------------------------------------------------------------------|
| 1   | $L = 0 \ (E_{0+})$                                             | 1(1) | 1(1)1  | I[1]                                                                                                           |
| 2   | $J = 1/2 \ (E_{0+}, M_{1-})$                                   | 4(4) | 4(4)1  | $I[1]$ , $\check{P}[1]$ , $\check{C}_x[1]$ , $\check{C}_z[1]$                                                  |
|     |                                                                |      | 4(3)2  | $I[2]$ , $\check{P}[1]$ , $\check{C}_x[1]$                                                                     |
| 3   | $L = 0, 1 \ (E_{0+}, M_{1-}, E_{1+})$                          | 6(6) | 6(6)1  | $I[1]$ , $\check{\Sigma}[1]$ , $\check{T}[1]$ , $\check{P}[1]$ , $\check{F}[1]$ , $\check{G}[1]$               |
|     |                                                                |      | 6(4)2  | $I[2]$ , $\check{\Sigma}[1]$ , $\check{T}[2]$ , $\check{P}[1]$                                                 |
|     |                                                                |      | 6(3)3  | $I[3],\check{\Sigma}[1],\check{T}[2]$                                                                          |
| 4   | $L = 0, 1 (E_{0+}, M_{1-}, E_{1+}, M_{1+})$                    | †    |        | TPWA at 1 angle not possible                                                                                   |
|     | full set of $4 S, P$ wave multipoles                           |      | 8(5)2  | $I[2],\check{\Sigma}[1],\check{T}[2],\check{F}[2],\check{F}[1]$                                                |
|     |                                                                |      | 8(4)3  | $I[3],\check{\Sigma}[1],\check{F}[2],\check{H}[2]$                                                             |
| 5   | $L = 0, 1, 2 (E_{0+}, M_{1-}, E_{1+}, E_{2-})$                 | 8(8) | 8(8)1  | $I[1],\check{\Sigma}[1],\check{T}[1],\check{P}[1],\check{F}[1],\check{G}[1],\check{C}_{x}[1],\check{O}_{x}[1]$ |
|     |                                                                |      | 8(4)2  | $I[2],\check{\Sigma}[2],\check{T}[2],\check{P}[2]$                                                             |
|     |                                                                |      | 8(3)3  | $I[3]$ , $\check{\Sigma}[2]$ , $\check{T}[3]$                                                                  |
| 6   | $J \le 3/2 \ (E_{0+}, M_{1-}, E_{1+}, M_{1+}, E_{2-}, M_{2-})$ | †    |        | TPWA at 1 or 2 angles not possible                                                                             |
|     |                                                                |      | 12(5)3 | $I[3],\check{\Sigma}[2],\check{T}[3],\check{F}[2],\check{F}[2]$                                                |
|     |                                                                |      | 12(4)4 | $I[4],\check{\Sigma}[2],\check{F}[3],\check{H}[3]$                                                             |
| 7   | $L = 0, 1, 2 (E_{0+}, \dots, M_{2+})$                          | †    |        | TPWA at 1 or 2 angles not possible                                                                             |
|     | full set of 8 $S, P, D$ wave multipoles                        |      | 16(6)3 | $I[3],\check{\Sigma}[3],\check{T}[3],\check{F}[3],\check{F}[3],\check{G}[1]$                                   |
|     |                                                                |      | 16(5)4 | $I[4]$ , $\check{\Sigma}[3]$ , $\check{T}[3]$ , $\check{F}[3]$ , $\check{F}[3]$                                |
|     |                                                                |      | 16(4)5 | $I[5], \check{\Sigma}[3], \check{F}[4], \check{H}[4]$ Four are                                                 |

#### Order:

enough!

# of different measurements,# of different observables# of different angles

Data: Akondi et al. (A2 at MAMI) PRL 113, 102001 (2014)





| Target | Recoil |
|--------|--------|
| +y     | 0      |
| -y     | 0      |
|        | +y     |



| Beam       | Target | Recoil |
|------------|--------|--------|
| +1         | +x     | 0      |
| <b>-</b> 1 | +x     | 0      |

