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Unpolarized Structure Functions from HERA
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• At HERA, the proton structure functions increase strongly at small x

• Reflects a power-law growth of gluon and sea quark densities

Eur. Phys. J. C75 (2015) 580

JHEP 1001 (2010) 109
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Non-Abelian Bremsstrahlung at High Energies

• At high energies, QCD radiates soft gluons
uniformly around mid-rapidity

➢ Intrinsic feature of non-Abelian field theories

CMS Collaboration, Phys. Lett. B751 (2015) 143

(saddle shape from Jacobian)

(small coupling) (large phase space)
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A Large Phase Space for Soft Gluons 

• Perturbation theory in pQCD relies 
on a hierarchy of contributions

LO NLO
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A Large Phase Space for Soft Gluons 

• Perturbation theory in pQCD relies 
on a hierarchy of contributions

LO NLO

…

• At high energies (small x), the large logarithmic phase 
space enhances the probability of soft gluon radiation
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The Small-x Gluon Cascade

JHEP 1001 (2010) 109

ρ

ρ

ρ

• Recast the systematic enhancement as a 
differential equation

➢ Power-law growth of the gluon density at small x

“Pomeron Intercept”

Kuraev, Lipatov, and Fadin, Sov. Phys. JETP 45 (1977) 199
Balitsky and Lipatov, Sov. J. Nucl. Phys. 28 (1978) 822
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An Emergent Saturation Scale

• At high enough densities, gluon recombination competes with bremsstrahlung

• Saturation of the gluon density
L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rept. 100 (1983) 1
A. H. Mueller and J. W. Qiu, Nucl. Phys. B268 (1986) 427
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ρ
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• The saturation momentum scale 
grows with the density

Equilibrium point:  Qs
2



The Onset of the Nonlinear Regime
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• Gluons have nonlinear 
interactions

𝜌𝑚𝑎𝑥 =
8 𝑄𝑠

2

3 𝜋2𝛼𝑠

≈ 20 𝑓𝑚−2 ~ 1031 𝑚−2

Saturation at high density

Exponential
at low density

Increasing Energy

➢ Naturally evolve toward a 
maximum gluon density

➢ Simplify to classical equations!
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The Perturbative High-Density Limit

• Parton transverse momentum 
distributions are dynamically 
screened below Qs

• If the density is large enough that Qs

becomes a (semi)hard scale, the 
dynamics become perturbative



M. Sievert Experimental Signals of Saturation 10 / 23

Discovery Potential at the EIC

• With high energies and heavy nuclei, a 
future Electron-Ion Collider may peek 
into this regime.

A. Accardi et al., Eur. Phys. J. A52 (2016)
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(Extended) Geometric Scaling

• Geometric scaling: 

➢ structure functions depend only on 𝜏 =
𝑄/𝑄𝑠(𝑥)

➢ Signal of “pre”-saturation

➢ For 𝑥 < 0.01, HERA data seems to 
exhibit geometric scaling
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A. M. Stasto et al., Phys. Rev. Lett. 86 (2001)



Diffraction in ep and eA

• Proportional to gluon density 
at amplitude level (GPD)
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A. Accardi et al., Eur. Phys. J. A52 (2016) A. Rezaeian et al., Phys. Rev. D87 (2013)



Diffraction in Ultraperipheral Collisions
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J. Seger’s TalkD. Tapia Takaki’s Talk



The Cronin Peak in pA
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D. Kharzeev et al., Phys. Lett. B599 (2004)

• Multiple scattering redistributes gluons to higher momenta: Cronin enhancement

➢ Nonlinear evolution destroys the peak at forward rapidities

BRAHMS (2004)



Hybrid Factorization in pA
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A. Stasto et al., Phys. Rev. Lett 112 (2014)

G. Chirilli et al., 
Phys. Rev. D86 (2012)



Back to Back Correlations in pA

• For dihadron production in 𝒑𝒑, there 
is a pronounced back to back peak at 
∆𝜑 → ∆𝜑 + 𝜋

➢ Multiple scattering from the medium 
broadens and depletes the back to 
back peak in 𝒑𝑨

➢ Natural in a saturation framework, but 
also momentum broadening in 
general
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J. Albacete., Nucl. Phys. A910 (2013)



Broadening in Jet Quenching

• CGC Particle Production:
➢ Controlled by dipole scattering cross sections

• The same amplitudes enter jet quenching
➢ Stimulated radiation from multiple scattering
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J.-P. Blaizot et al., JHEP 1301 (2013)



Multiparticle Correlations in pA / aA

• Two-particle correlations produced in small systems collisions

➢ Correlations arise from scattering in anisotropic color domains
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Mace et al., Phys. Rev. Lett. 121 (2018), and arXiv:1901.10506



Advancing the Theory:  NLO BK

• Evolution equations at NLO introduce double logarithms
➢ 𝑵𝑳𝑳′ Resummation
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A. Stasto et al., Phys. Rev. Lett 112 (2014)

B. Ducloue et al., arXiv: 1902.06637



Connection to Spin at Small x

• Small-x evolution of quark / gluon polarization
➢ Also double logarithmic
➢ Leads to enhancement of total spin contributions

• One approach: Light-Front Wave Functions
➢ Convergent at small x
➢ O(20%) enhancement

• Another approach: Infrared Evolution Equations
➢ Power-law growth at small x
➢ Total spin terms are apparently divergent
➢ Regulated by nonlinear saturation corrections?
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Y. Kovchegov, D. Pitonyak, M.S.,
Phys. Rev. Lett. 118 (2017)

Y. Hatta, D.-J. Yang, Phys. Lett. B781 (2018)
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2. Potential Signals of Saturation



Saturation as a Fundamental Test of the Standard Model
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Eur. Phys. J. C75 (2015) 580

• Power-law growth of the structure functions 
would violate unitarity if it continued

• Saturation is the mechanism by which unitarity 
is restored at high energies
➢ QCD is a well-defined theory up to infinite 

energies and infinite 𝑸𝟐 (UV complete)

❖ “Saturation is a non-negotiable property of QCD”
– N. Armesto

• The same non-Abelian nature which gives 
asymptotic freedom also gives saturation
➢ Fundamental test of quantum field theory


