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BS amplitudeà beyond the valence 

Form-factors, DVCS in ERBL – DGLAP regions

Fragmentation function
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Vertex Form-Factor 

Ladder approximation (L): suppression of XL (non-planar diagram) for Nc=3

[A. Nogueira, CR Ji, Ydrefors, TF, PLB 777 (2018) 2017]

Vector

BSE for for fermion-antifermion: 0- state 
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BS amplitude fermion-antifermion: 0-

Nakanishi Integral Representation (NIR)

Kusaka and Williams, PRD 51 (1995) 7026 (bosons)
Light-front projection: integration in k-

Carbonell&Karmanov EPJA27(2006)1;EPJA27(2006)11;
TF, Salme, Viviani PRD85(2012)036009;PRD89(2014) 016010,EPJC75(2015)398

(application to scattering)
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Fermion-antifermion: Carbonell and Karmanov EPJA 46 (2010) 387

LF singularities: de Paula, TF,Salmè, Viviani PRD 94 (2016) 071901

Light-front projection: 
integration over k-
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MOCK PION MODEL
W. de Paula, TF, Pimentel, Salmè, Viviani, EPJC 77 (2017) 764

l Gluon effective mass ~ 500 MeV – Landau Gauge LQCD
[Oliveira, Bicudo, JPG 38 (2011) 045003;  
Duarte, Oliveira, Silva,  Phys. Rev. D 94 (2016) 01450240]

l Mquark ~ 250 MeV 
[Parappilly, et al, PR D73 (2006) 054504]

l Λ/m = 2

Results
Ø 4 amplitudes in LF variables
Ø valence probability, decay constant
Ø momentum distributions
Ø Electromagnetic form factor



3D LF amplitudes

Dynamical observables: the LFWF components;
(B/m = 1.35, µ/m = 2.0, Λ/m = 1.0, mq=215 MeV): fπ = 96 MeV,
Pval = 0.34
Other observables are straightforward to compute once you have
BS amplitude solution;
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0.68

Light-front amplitudes

W. de Paula, et. al, in preparation
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Valence distribution functions: longitudinal and transverse

Mquark 187 MeV

Mgluon 28 MeV

Λ/m =2

Pval=0.64

Mquark 187 MeV

Mgluon 280 MeV

Λ/m =2

Pval=0.78

f⇡ = 77MeV
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f⇡ = 99MeV
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Preliminary: Pion’s electromagnetic form factor
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As quoted in [1]

[1] Collection of R. Baldini, et al., Eur. Phys. J. C 11, 709 (1999); Nucl. Phys. A 666 & 667, 3 (2000);
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Valence contribution renormalized to the charge

Thanks to Jorge Alvarenga Nogueira



Dyson-Schwinger equation in Rainbow ladder truncation
from Euclidean to Minkowski: Un-Wick rotating

S�1(p) = A(p2) 6p�B(p2)
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Un-Wick-rotating the fermion DSE

I Fermion DSE in rainbow truncation in Euclidean metric

A(p2) = 1 + g
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I Analytic continuation of Euclidean fermion DSE
I choose p0 axis and write four-vectors as p = (p0,~p)
I replace 4-dim Euclidean integral by k0 integral and 3-dim integral
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I Un-Wick-rotate p0 and k0 from Euclidean to Minkowski space
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QED-like, Landau Gauge, bare vertices, massive vector boson, Pauli-Villars regulator
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Nonperturbative methods

I Lattice QCD

I Dyson–Schwinger Equations

I Light-Front QCD

I AdS/QCD holography

I Stochastic quantization

I . . .

= +p -1 -1p

k

p-k

Dirac’s forms of relativistic dynamics [Dirac, Rev.Mod.Phys. ’49]

In relativity, t = x0 is not the only choice of “time”, which dictates the
direction of the dynamical evolution.

instant form front form point form
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time variable

quantization
surface

Hamiltonian

kinematical

dynamical

dispersion
relation
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Wick-rotated SD equation

Un-Wick rotation: k0 ! k0 exp ı(✓ � ⇡
2 ) p0 ! p0 exp ı(✓ � ⇡

2 )
<latexit sha1_base64="Jmb1SRbF8J9i7Gl4IsK2kVtRcuc="></latexit><latexit sha1_base64="Jmb1SRbF8J9i7Gl4IsK2kVtRcuc="></latexit><latexit sha1_base64="Jmb1SRbF8J9i7Gl4IsK2kVtRcuc="></latexit><latexit sha1_base64="Jmb1SRbF8J9i7Gl4IsK2kVtRcuc="></latexit>

✓ =
⇡

2
<latexit sha1_base64="+Q69qvpCukdKRNxftJFrfpwSinA=">AAAB+3icbZDLSsNAFIYnXmu9xbp0M1gEVyUpgm6EohuXFewFmlAm05N26OTCzIlYQl/FjQtF3Poi7nwbp20W2vrDwMd/zuGc+YNUCo2O822trW9sbm2Xdsq7e/sHh/ZRpa2TTHFo8UQmqhswDVLE0EKBErqpAhYFEjrB+HZW7zyC0iKJH3CSgh+xYSxCwRkaq29XPBwBsmsvVIx7qaB12rerTs2Zi66CW0CVFGr27S9vkPAsghi5ZFr3XCdFP2cKBZcwLXuZhpTxMRtCz2DMItB+Pr99Ss+MM6BhosyLkc7d3xM5i7SeRIHpjBiO9HJtZv5X62UYXvm5iNMMIeaLRWEmKSZ0FgQdCAUc5cQA40qYWykfMZMCmrjKJgR3+cur0K7XXMP3F9XGTRFHiZyQU3JOXHJJGuSONEmLcPJEnskrebOm1ov1bn0sWtesYuaY/JH1+QPmhpOt</latexit><latexit sha1_base64="+Q69qvpCukdKRNxftJFrfpwSinA=">AAAB+3icbZDLSsNAFIYnXmu9xbp0M1gEVyUpgm6EohuXFewFmlAm05N26OTCzIlYQl/FjQtF3Poi7nwbp20W2vrDwMd/zuGc+YNUCo2O822trW9sbm2Xdsq7e/sHh/ZRpa2TTHFo8UQmqhswDVLE0EKBErqpAhYFEjrB+HZW7zyC0iKJH3CSgh+xYSxCwRkaq29XPBwBsmsvVIx7qaB12rerTs2Zi66CW0CVFGr27S9vkPAsghi5ZFr3XCdFP2cKBZcwLXuZhpTxMRtCz2DMItB+Pr99Ss+MM6BhosyLkc7d3xM5i7SeRIHpjBiO9HJtZv5X62UYXvm5iNMMIeaLRWEmKSZ0FgQdCAUc5cQA40qYWykfMZMCmrjKJgR3+cur0K7XXMP3F9XGTRFHiZyQU3JOXHJJGuSONEmLcPJEnskrebOm1ov1bn0sWtesYuaY/JH1+QPmhpOt</latexit><latexit sha1_base64="+Q69qvpCukdKRNxftJFrfpwSinA=">AAAB+3icbZDLSsNAFIYnXmu9xbp0M1gEVyUpgm6EohuXFewFmlAm05N26OTCzIlYQl/FjQtF3Poi7nwbp20W2vrDwMd/zuGc+YNUCo2O822trW9sbm2Xdsq7e/sHh/ZRpa2TTHFo8UQmqhswDVLE0EKBErqpAhYFEjrB+HZW7zyC0iKJH3CSgh+xYSxCwRkaq29XPBwBsmsvVIx7qaB12rerTs2Zi66CW0CVFGr27S9vkPAsghi5ZFr3XCdFP2cKBZcwLXuZhpTxMRtCz2DMItB+Pr99Ss+MM6BhosyLkc7d3xM5i7SeRIHpjBiO9HJtZv5X62UYXvm5iNMMIeaLRWEmKSZ0FgQdCAUc5cQA40qYWykfMZMCmrjKJgR3+cur0K7XXMP3F9XGTRFHiZyQU3JOXHJJGuSONEmLcPJEnskrebOm1ov1bn0sWtesYuaY/JH1+QPmhpOt</latexit><latexit sha1_base64="+Q69qvpCukdKRNxftJFrfpwSinA=">AAAB+3icbZDLSsNAFIYnXmu9xbp0M1gEVyUpgm6EohuXFewFmlAm05N26OTCzIlYQl/FjQtF3Poi7nwbp20W2vrDwMd/zuGc+YNUCo2O822trW9sbm2Xdsq7e/sHh/ZRpa2TTHFo8UQmqhswDVLE0EKBErqpAhYFEjrB+HZW7zyC0iKJH3CSgh+xYSxCwRkaq29XPBwBsmsvVIx7qaB12rerTs2Zi66CW0CVFGr27S9vkPAsghi5ZFr3XCdFP2cKBZcwLXuZhpTxMRtCz2DMItB+Pr99Ss+MM6BhosyLkc7d3xM5i7SeRIHpjBiO9HJtZv5X62UYXvm5iNMMIeaLRWEmKSZ0FgQdCAUc5cQA40qYWykfMZMCmrjKJgR3+cur0K7XXMP3F9XGTRFHiZyQU3JOXHJJGuSONEmLcPJEnskrebOm1ov1bn0sWtesYuaY/JH1+QPmhpOt</latexit>

Euclidean Minkowski ✓ = 0
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Analytic structure inverse fermion propagator

I Pole in propagator S in time-like region at p2 = m2
pole ⇡ 0.48

I Additional analytic structure more evident from inverse propagator
I Consider ↵ = 0.3 and µ = 1.0

I branch-cut in A and B starting in time-like region at (mpole + µ)2

I in limit µ ! 0 branch-cut starts at mass-pole
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(real part) (real part)

m0 = 0.5 µ = 1 ↵ = 0.3 ⇤ = 10
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Parameters
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Spectral representation (inverse) fermion propagator

⌃B(p
2) = �i

Z 1

0
ds

⇢B(s)

s � p2

⇢B(s) = Im[⌃B(s)/⇡]

I Solve un-wick-rotated DSE
I Approximate

⇢B(s) ⇡ Im[⌃B(s ei2✓)/⇡]

I Integrate
R

ds
⇢B(s)
s�p2

I Take limit ✓ ! 0 and
recover Euclidean solution
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) calculated from Nakanishi representation using ρ

B
 = Im[B(s)/π]

Challenge for propagator S: spectral representation has �-function
I split spectral repr. into explicit �-function plus regular part
I can be done using on-shell renormalization Sauli, JHEP 0303, 1 (2003)

P. Maris (ISU & ITA) Euclidean and Minkowski DSEs UNICSUL São Paulo, Oct 2018 41 / 49

⌃scalar(p
2) = B(p2)�m0 =

Z 1

0

⇢B(s)

p2 � s+ ı✏
<latexit sha1_base64="6oxKZHlqcK+TEnzVIDDN4+0tIek="></latexit><latexit sha1_base64="6oxKZHlqcK+TEnzVIDDN4+0tIek="></latexit><latexit sha1_base64="6oxKZHlqcK+TEnzVIDDN4+0tIek=">AAACRHicbVBNaxRBEO2JH4nrRzZ69NK4CBskYSYI5hII68Vjgm4S2N4MNb01u036Y+iuEZdhflwu/gBv/gIvHpTgVezd7EETHzT1eK+Kqn5FpVWgNP2arN25e+/++saDzsNHj59sdreengRXe4lD6bTzZwUE1MrikBRpPKs8gik0nhYXbxf+6Uf0QTn7geYVjg1MrSqVBIpS3h2J92pqIG8E4SdqggQNvm371fne9sFgWXZMnh4IZSlPz2Mpac5F6UE2ws9cPuiH7baJfTvhlVAGaCawCko72+bdXrqbLsFvk2xFemyFo7z7RUycrA1akhpCGGVpReMGPCmpse2IOmAF8gKmOIrUgsEwbpYhtPxlVCa8dD4+S3yp/j3RgAlhborYubgy3PQW4v+8UU3l/rhRtqoJrbxeVNaak+OLRPlEeZSk55GA9CreyuUMYkAUc+/EELKbX75NTvZ2s8iPX/cOB6s4Nthz9oL1WcbesEP2jh2xIZPskn1jP9jP5HPyPblKfl23riWrmWfsHyS//wBbxbGv</latexit><latexit sha1_base64="6oxKZHlqcK+TEnzVIDDN4+0tIek="></latexit>

Spectral Representation (Nakanishi Integral representation)

⇢B(s) = �Im[B(s)/⇡]
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as it is found in that paper, for the zero-range interaction, the 
intermediate antiparticles are mandatory for generating the three-
body forces. Comparison of the results found by solving the LF 
and BS equations is instructive and it sheds light on the prop-
erties of the relativistic three-body systems with the zero-range 
interaction. The two-body LF and BS binding energies were cal-
culated and compared in [8]. We will calculate and compare also 
the dependencies of the LF and BS amplitudes on the transverse 
momenta. Fully Poincaré-covariant computation of the nucleon’s 
Faddeev amplitude with a ladder dressed-gluon exchange interac-
tion was performed in [9] (see [10] for a review).

(ii) It turns out that though the three-body state studied in [4,5]
for the interaction providing the existence of a two-body bound 
state is indeed the most low-lying physical state (with minimal 
positive three-body mass M2

3), there exists another (non-physical) 
low-lying state with negative M2

3. This is a “heavy legacy” of the 
Thomas collapse. Formally, from the point of view of the spec-
trum classification, the latter state is just the ground state (since it 
has the smallest M2

3), whereas the state found in [4,5] (and inter-
preted as the ground state) is the first excited state. By varying the 
two-body scattering length, we can push the ground state into the 
domain of the positive mass M2

3, so it becomes a physical state. In 
this situation the excited state found in [4,5] does not exist any-
more, since it was already driven into the continuous spectrum. 
This happens in both approaches –  the LF and BS ones, and the 
difference between them is in the numerical values of the param-
eters, as we will show here. Below we will discover and study this 
true low-lying state. This is another aim of our work.

The rest of this paper is organized as follows. In Sections 2
and 3 we present the three-body BS and LF equations. Sec. 4 is de-
voted to the derivation of the k⊥-dependent amplitudes in terms 
of the LF wave function and the BS Euclidean amplitude. In Sec. 5
we compute the positions of the ground and first excited levels 
and study how they move depending on variation of the two-
body interaction. Sec. 6 presents the numerical results for the LF 
wave function, BS amplitude and corresponding k⊥-dependent am-
plitudes. Finally, in Sec. 7 we draw the conclusions.

2. Bethe–Salpeter equation

The zero-range three-body BS equation for the vertex function 
v(q, p) from which the external propagators are excluded, for zero-
range interaction, has the form [4]:

v(q, p) = 2i F (M12)

∫
d4k

(2π)4
i

[k2−m2+iϵ]
i

[(p−q−k)2−m2+iϵ] v(k, p).

(1)

Here v(q, p) is the Faddeev component and, besides the total 
momentum p, it depends on one four-momentum q only. The 
function F (M12) is the two-body zero-range scattering amplitude 
found in a relativistic framework. It is given in [4,5]. For complete-
ness we cite it here, however, using as a parameter, the scattering 
length a:

F (M12) =
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Its argument M12 is two-body effective mass: M2
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. If the two-body system has a 

bound state with the mass M2, then a is positive and it is related 
to the bound state mass M2 as:

a = π yM2

2m arctan yM2

, yM2 = M2√
4m2 − M2

2

. (3)

If a < 0, the amplitude F (M12) has no pole in the physical do-
main 0 ≤ M12 ≤ 2m, that is, the two-body bound state is absent. 
However, as we will see below, the three-body system still can be 
bound as a Borromean state.

As mentioned, to simplify finding the solution of eq. (1), instead 
of the Minkowski space BS equation (1), we will solve the corre-
sponding integral equation in the Euclidean space. It provides the 
same spectrum, but different amplitudes.

The Euclidean equation is obtained by the Wick rotation of the 
integration contour, when it is possible. In Eq. (1) it is impossible: 
one can easily check that the position of singularities in the vari-
able k0 of the integrand in (1) prevents from this rotation. That is, 
the rotating contour crosses the singularities of the integrand. This 
was the obstacle in finding solution of Eq. (1). However, the shift 
of the rotation point changes the relative position of the rotating 
contour and singularities and might allow to avoid their crossings. 
We notice that the Wick rotation becomes possible after the fol-
lowing shift of variables:

k = k′ + 1
3

p, q = q′ + 1
3

p. (4)

After introducing new functions:

ṽ(q′, p) = v
(

q′ + 1
3

p, p
)

, ṽ(k′, p) = v
(
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p, p
)

the equation (1) obtains the form:
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(5)

where M ′2
12 = ( 2

3 p − q′)2. In the three-particle rest frame, for ex-
ample, the position of the pole (above the real axes) of the second 
propagator in (5) in the variable k′

0 is in the point k′
0 = k′

01, where

k′
01 = ξ + iϵ − q′

0, ξ = 1
3

M3 −
√

(k⃗ + q⃗)2 + m2. (6)

For the bound state M3 < 3m, the value of ξ is always negative: 
ξ < 0. We rotate the line of integration over k′

10 by the angle φ
and simultaneously replace q′

0 → q′
0 exp(iφ). Then the pole and the 

contour move so that the pole never crosses the contour.
The amplitude F (M ′2

12) has also a pole at M ′2
12 = M2

2 − iϵ , cor-
responding to the two-body bound state, if any. It generates two 
poles in ṽ(k′, p) vs. k′

0. One can easily check that if 2
3 M3 < M2

(this is the case, since the three-body binding energy per parti-
cle is larger than the two-body one), then these poles also do not 
prevent the Wick rotation. Therefore we can safely make the Wick 
rotation in Eq. (5), in contrast to the Eq. (1).

In the rest frame, after Wick rotation by the angle φ = π/2: 
k0 = ik4, q0 = iq4, and after integrating in (5) over the angles be-
tween k⃗ and q⃗, we obtain the equation:
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as it is found in that paper, for the zero-range interaction, the 
intermediate antiparticles are mandatory for generating the three-
body forces. Comparison of the results found by solving the LF 
and BS equations is instructive and it sheds light on the prop-
erties of the relativistic three-body systems with the zero-range 
interaction. The two-body LF and BS binding energies were cal-
culated and compared in [8]. We will calculate and compare also 
the dependencies of the LF and BS amplitudes on the transverse 
momenta. Fully Poincaré-covariant computation of the nucleon’s 
Faddeev amplitude with a ladder dressed-gluon exchange interac-
tion was performed in [9] (see [10] for a review).

(ii) It turns out that though the three-body state studied in [4,5]
for the interaction providing the existence of a two-body bound 
state is indeed the most low-lying physical state (with minimal 
positive three-body mass M2

3), there exists another (non-physical) 
low-lying state with negative M2

3. This is a “heavy legacy” of the 
Thomas collapse. Formally, from the point of view of the spec-
trum classification, the latter state is just the ground state (since it 
has the smallest M2

3), whereas the state found in [4,5] (and inter-
preted as the ground state) is the first excited state. By varying the 
two-body scattering length, we can push the ground state into the 
domain of the positive mass M2

3, so it becomes a physical state. In 
this situation the excited state found in [4,5] does not exist any-
more, since it was already driven into the continuous spectrum. 
This happens in both approaches –  the LF and BS ones, and the 
difference between them is in the numerical values of the param-
eters, as we will show here. Below we will discover and study this 
true low-lying state. This is another aim of our work.

The rest of this paper is organized as follows. In Sections 2
and 3 we present the three-body BS and LF equations. Sec. 4 is de-
voted to the derivation of the k⊥-dependent amplitudes in terms 
of the LF wave function and the BS Euclidean amplitude. In Sec. 5
we compute the positions of the ground and first excited levels 
and study how they move depending on variation of the two-
body interaction. Sec. 6 presents the numerical results for the LF 
wave function, BS amplitude and corresponding k⊥-dependent am-
plitudes. Finally, in Sec. 7 we draw the conclusions.

2. Bethe–Salpeter equation

The zero-range three-body BS equation for the vertex function 
v(q, p) from which the external propagators are excluded, for zero-
range interaction, has the form [4]:

v(q, p) = 2i F (M12)

∫
d4k

(2π)4
i

[k2−m2+iϵ]
i

[(p−q−k)2−m2+iϵ] v(k, p).
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Here v(q, p) is the Faddeev component and, besides the total 
momentum p, it depends on one four-momentum q only. The 
function F (M12) is the two-body zero-range scattering amplitude 
found in a relativistic framework. It is given in [4,5]. For complete-
ness we cite it here, however, using as a parameter, the scattering 
length a:

F (M12) =
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. If the two-body system has a 

bound state with the mass M2, then a is positive and it is related 
to the bound state mass M2 as:

a = π yM2

2m arctan yM2

, yM2 = M2√
4m2 − M2

2

. (3)

If a < 0, the amplitude F (M12) has no pole in the physical do-
main 0 ≤ M12 ≤ 2m, that is, the two-body bound state is absent. 
However, as we will see below, the three-body system still can be 
bound as a Borromean state.

As mentioned, to simplify finding the solution of eq. (1), instead 
of the Minkowski space BS equation (1), we will solve the corre-
sponding integral equation in the Euclidean space. It provides the 
same spectrum, but different amplitudes.

The Euclidean equation is obtained by the Wick rotation of the 
integration contour, when it is possible. In Eq. (1) it is impossible: 
one can easily check that the position of singularities in the vari-
able k0 of the integrand in (1) prevents from this rotation. That is, 
the rotating contour crosses the singularities of the integrand. This 
was the obstacle in finding solution of Eq. (1). However, the shift 
of the rotation point changes the relative position of the rotating 
contour and singularities and might allow to avoid their crossings. 
We notice that the Wick rotation becomes possible after the fol-
lowing shift of variables:

k = k′ + 1
3

p, q = q′ + 1
3

p. (4)

After introducing new functions:

ṽ(q′, p) = v
(

q′ + 1
3

p, p
)

, ṽ(k′, p) = v
(

k′ + 1
3

p, p
)

the equation (1) obtains the form:

ṽ(q′, p)

= 2i F (M ′2
12)

∫
d4k′

(2π)4
i2 ṽ(k′,p)[(

k′+ 1
3 p

)2
−m2+iϵ

][(
1
3 p−q′−k′

)2
−m2+iϵ

] ,

(5)

where M ′2
12 = ( 2

3 p − q′)2. In the three-particle rest frame, for ex-
ample, the position of the pole (above the real axes) of the second 
propagator in (5) in the variable k′

0 is in the point k′
0 = k′

01, where

k′
01 = ξ + iϵ − q′

0, ξ = 1
3

M3 −
√

(k⃗ + q⃗)2 + m2. (6)

For the bound state M3 < 3m, the value of ξ is always negative: 
ξ < 0. We rotate the line of integration over k′

10 by the angle φ
and simultaneously replace q′

0 → q′
0 exp(iφ). Then the pole and the 

contour move so that the pole never crosses the contour.
The amplitude F (M ′2

12) has also a pole at M ′2
12 = M2

2 − iϵ , cor-
responding to the two-body bound state, if any. It generates two 
poles in ṽ(k′, p) vs. k′

0. One can easily check that if 2
3 M3 < M2

(this is the case, since the three-body binding energy per parti-
cle is larger than the two-body one), then these poles also do not 
prevent the Wick rotation. Therefore we can safely make the Wick 
rotation in Eq. (5), in contrast to the Eq. (1).

In the rest frame, after Wick rotation by the angle φ = π/2: 
k0 = ik4, q0 = iq4, and after integrating in (5) over the angles be-
tween k⃗ and q⃗, we obtain the equation:
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as it is found in that paper, for the zero-range interaction, the 
intermediate antiparticles are mandatory for generating the three-
body forces. Comparison of the results found by solving the LF 
and BS equations is instructive and it sheds light on the prop-
erties of the relativistic three-body systems with the zero-range 
interaction. The two-body LF and BS binding energies were cal-
culated and compared in [8]. We will calculate and compare also 
the dependencies of the LF and BS amplitudes on the transverse 
momenta. Fully Poincaré-covariant computation of the nucleon’s 
Faddeev amplitude with a ladder dressed-gluon exchange interac-
tion was performed in [9] (see [10] for a review).

(ii) It turns out that though the three-body state studied in [4,5]
for the interaction providing the existence of a two-body bound 
state is indeed the most low-lying physical state (with minimal 
positive three-body mass M2

3), there exists another (non-physical) 
low-lying state with negative M2

3. This is a “heavy legacy” of the 
Thomas collapse. Formally, from the point of view of the spec-
trum classification, the latter state is just the ground state (since it 
has the smallest M2

3), whereas the state found in [4,5] (and inter-
preted as the ground state) is the first excited state. By varying the 
two-body scattering length, we can push the ground state into the 
domain of the positive mass M2

3, so it becomes a physical state. In 
this situation the excited state found in [4,5] does not exist any-
more, since it was already driven into the continuous spectrum. 
This happens in both approaches –  the LF and BS ones, and the 
difference between them is in the numerical values of the param-
eters, as we will show here. Below we will discover and study this 
true low-lying state. This is another aim of our work.

The rest of this paper is organized as follows. In Sections 2
and 3 we present the three-body BS and LF equations. Sec. 4 is de-
voted to the derivation of the k⊥-dependent amplitudes in terms 
of the LF wave function and the BS Euclidean amplitude. In Sec. 5
we compute the positions of the ground and first excited levels 
and study how they move depending on variation of the two-
body interaction. Sec. 6 presents the numerical results for the LF 
wave function, BS amplitude and corresponding k⊥-dependent am-
plitudes. Finally, in Sec. 7 we draw the conclusions.

2. Bethe–Salpeter equation

The zero-range three-body BS equation for the vertex function 
v(q, p) from which the external propagators are excluded, for zero-
range interaction, has the form [4]:
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Here v(q, p) is the Faddeev component and, besides the total 
momentum p, it depends on one four-momentum q only. The 
function F (M12) is the two-body zero-range scattering amplitude 
found in a relativistic framework. It is given in [4,5]. For complete-
ness we cite it here, however, using as a parameter, the scattering 
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If a < 0, the amplitude F (M12) has no pole in the physical do-
main 0 ≤ M12 ≤ 2m, that is, the two-body bound state is absent. 
However, as we will see below, the three-body system still can be 
bound as a Borromean state.

As mentioned, to simplify finding the solution of eq. (1), instead 
of the Minkowski space BS equation (1), we will solve the corre-
sponding integral equation in the Euclidean space. It provides the 
same spectrum, but different amplitudes.

The Euclidean equation is obtained by the Wick rotation of the 
integration contour, when it is possible. In Eq. (1) it is impossible: 
one can easily check that the position of singularities in the vari-
able k0 of the integrand in (1) prevents from this rotation. That is, 
the rotating contour crosses the singularities of the integrand. This 
was the obstacle in finding solution of Eq. (1). However, the shift 
of the rotation point changes the relative position of the rotating 
contour and singularities and might allow to avoid their crossings. 
We notice that the Wick rotation becomes possible after the fol-
lowing shift of variables:
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0 = k′

01, where

k′
01 = ξ + iϵ − q′

0, ξ = 1
3

M3 −
√

(k⃗ + q⃗)2 + m2. (6)
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ξ < 0. We rotate the line of integration over k′
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and simultaneously replace q′
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0. One can easily check that if 2
3 M3 < M2
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cle is larger than the two-body one), then these poles also do not 
prevent the Wick rotation. Therefore we can safely make the Wick 
rotation in Eq. (5), in contrast to the Eq. (1).

In the rest frame, after Wick rotation by the angle φ = π/2: 
k0 = ik4, q0 = iq4, and after integrating in (5) over the angles be-
tween k⃗ and q⃗, we obtain the equation:
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Fig. 4. The value M2
3 vs. the inverse scattering length (a m)−1. BS ground state (solid 

curve); LF ground state (dashed curve); BS first excited state (dashed–dotted) and 
LF first excited state (double-dash-dotted).

Table 1
The values of the inverse scattering length 
(a m)−1 for which the curves in Fig. 4 cross 
M2

3 = 9m2 (that is, B3 = 3m − M3 = 0) and 
M2

3 = 0. Values presented within the used con-
vergence, as discussed in the text.

M2
3 Inverse scattering length (a m)−1

ground state excited state

BS LF BS LF

9m2 −0.78 −0.57 −0.08 −0.04
0 −0.51 −0.21 0.34 0.50

Fig. 4 shows that the three-body mass M2
3 found in the BS ap-

proach is always smaller than M2
3 found in the LF one. This means 

that the three-body forces discussed in Sec. 3 are attractive and 
strong. This conclusion coincides with the result found in Ref. [7]
for the OBE kernel. The dimensionless values (a m)−1 for which 
the values M2

3 cross zero and cross 9m2 (when the three-body 
binding energy B3 = 3m − M3 crosses zero) are given in the Ta-
ble 1. The positive inverse scattering lengths (a m)−1 ≈ 0.34 (BS) 
and (a m)−1 ≈ 0.50 (LF), for which M2

3 for excited state crosses 
zero, correspond, according to Eq. (3), to the two-body bind-
ing energies B2 ≈ 0.194m and B2 ≈ 0.582m, respectively. When 
B2 = 2m − M2 → 0, the ground state values are M2

3 ≈ −94 m2

for the BS equation and M2
3 ≈ −18 m2 for the LF one. They are 

extremely over-bounded. The corresponding excited state values 
(when B2 = 0) are B3 ≈ 0.066m for the BS equation and B3 ≈
0.013m for the LF one. The latter value is close to the one com-
puted in [5].

6. Light-front vertex function and Bethe–Salpeter amplitude

In order to study how the binding energy impacts the behav-
ior of the solution, we vary the two-body parameters to obtain, 
in the LF framework, the binding energy B3 = m, first, for the 
ground state (in this case: (a m)−1 = −0.31), then, for the excited 
state (in this case: (a m)−1 = 0.4 → B2 ≈ 0.297m). These two solu-
tions !(k⊥, x) of the LF equation (10), corresponding to the same 
binding energy, but to different states (ground and excited ones) 
and normalized by !(0, 1/3) = 1, are compared in Fig. 5. Though, 
in general, they considerably differ from each other, the functions 
!(k⊥, x = 1/3) vs. k⊥ for the ground and excited states have the 
same asymptotic decrease, though with different coefficients: ! for 
the excited state is ten times smaller than for the ground state.

The asymptotic behavior of !(k⊥, x) follows from Eq. (10). Up 
to the logarithmic correction resulting from F (M12), the asymp-
totic k⊥-dependence is provided by the factor (M2

0 − M2
3) ∼ k2

⊥
that gives !(k⊥, x) ∼ c/k2

⊥ , which is close to the asymptotic form 
of both curves shown in the right panel of Fig. 5. Whereas, ! in 
the non-asymptotic domain and the factor c are determined by the 
integral in l.h. side of Eq. (10) which is sensitive to the details of 
!(k⊥, x). Therefore they strongly depend on the state.

The solutions v E (k4, kv) of the Euclidean BS equation (7) for 
B3 = m [(a m)−1 ≈ −0.57 for the ground state and (a m)−1 =
0.25 → B2 ≈ 0.093 m for the excited state] are shown in Fig. 6. 
Note that Re[v E (k4, kv = const)] vs. k4 is symmetric relative to 
k4 → −k4 and Im[v E (k4, kv = const)] is antisymmetric, in accor-
dance with Eq. (9).

The comparison of the k⊥-dependences of the LF and BS ampli-
tudes is shown in Fig. 7. Though the full amplitudes are given by 
sums of three Faddeev components (Eq. (14) in the LF approach 
and Eq. (15) in the BS approach), we present the contributions 
of one component only, i.e., AL F

1 , Eq. (14), in comparison to AB S
1 , 

Eq. (15), each of them depends on k⃗1⊥ and k⃗2⊥ . We put k⃗2⊥ = 0, 
normalize both A1 to 1 at k1⊥ = 0 and compare their k1⊥ de-
pendencies. The calculations were carried out for B3 = m in both 
approaches. The node structure is clearly visible in the figure. This 
is important since the number of nodes is a way of characteriz-
ing states and the ground state has no node, while the first excited 
state presents one.

One can see in Fig. 7 that for the same three-body binding en-
ergy, the BS approach results in a wider distribution than the LF 
one. This reflects the effect coming from the three-body graphs 
that are not considered in the LF truncated equation. If we com-
pare the k⊥-dependences obtained from Minkowski and Euclidean 
BS equations we should obtain the same result, as shown in [12]
for the two-body case. In any given approach (BS or LF), the large 
momentum behavior of the excited state is the same as for the 

Fig. 5. The vertex function !(k⊥ = 0, x), satisfying the LF equation (10), vs. x (left panel); and !(k⊥, x = 1/3) vs. k⊥ (right panel). In both panels we present the ground state 
with B3 = m (solid curve); and the excited state (dashed curve), also with B3 = m, but for different (a m)−1, both given in the text.
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Fig. 2. The three-body LF graphs obtained by time-ordering of the Feynman graph shown in right panel of Fig. 1.

Fig. 3. Examples of many-body intermediate state contributions to the LF three-body forces.

ψ(k⃗1⊥ , k⃗2⊥ , k⃗3⊥ , x1, x2, x3)

= "(k⃗1⊥ , x1) + "(k⃗2⊥ , x2) + "(k⃗3⊥ , x3)

M2
0 − M2

3

, (12)

where M2
0 is defined by (11).

For the BS amplitude, the energy denominator is replaced by 
the product of three propagators:

i#M(k1,k2,k3; p)

= i3 v M(k1) + v M(k2) + v M(k3)

(k2
1 − m2 + iϵ)(k2

2 − m2 + iϵ)(k2
3 − m2 + iϵ)

, (13)

where k1 + k2 + k3 = p.
In the three-body case we start with a 4D integral (over k14, 

k1z , k24 and k2z) from the Euclidean BS amplitude. We can in-
tegrate analytically over two of the four variables, which do not 
enter in the argument of v . Similarly, we obtain a 2D integral (over 
x1 and x2) from the LF wave function. We can integrate analytically 
over one of these variables. In this way, for the LF wave function 
contribution we find:

AL F (k⃗1⊥ , k⃗2⊥ ) = AL F
1 + AL F

2 + AL F
3 ,

AL F
i =

1∫

0

dx1 "(k⃗i⊥ , x1)η(k⃗1⊥ , k⃗2⊥ ; x1), (14)

where

η(k⃗1⊥ , k⃗2⊥ ; x1) = −1
2

√
π

2

1−x1∫

0

dx2

a′x2
2 + b′x2 + c′ ,

and a′ = E2
1⊥ − x1M2

3, b′ = −(1 − x1)E2
1⊥ + x1[E2

2⊥ − E2
3⊥ + (1 −

x1)M2
3], c′ = E2

2⊥ − x1M2
3.

For the Euclidean BS contribution we get:

AB S(k⃗1⊥ , k⃗2⊥ ) = AB S
1 + AB S

2 + AB S
3 ,

AB S
1 =

∫
ṽ E(k14,k1v)β(k14,k1z; k⃗1⊥ , k⃗2⊥ )dk14dk1z, (15)

β(k14,k1z; k⃗1⊥ , k⃗2⊥ ) = − χ(k14,k1z; E2⊥ , E3⊥ )[(
k14 − i

3 M3

)2
+ k2

1z + E2
1⊥

] ,

χ(k14,k1z; k⃗1⊥ , k⃗2⊥ ) =
1∫

0

πdy
ay2 + by + c

,

where k1v =
√

k2
1z + k2

1⊥ , Ei⊥ =
√

m2 + k2
i⊥ , k⃗3⊥ = −(k⃗1⊥ + k⃗2⊥ )

and

a = −k2
1z −

(
k14 + i

2
3

M3

)2

,

b = k2
1z +

(
k14 + i

2
3

M3

)2

+ E2
2⊥ − E2

3⊥ , c = E2
3⊥ .

Analogous formulas are easily found for AB S
2 and AB S

3 .
If the LF wave function is obtained by the LF projection of the 

BS amplitude, then AL F (k⃗1⊥ , ⃗k2⊥ ), Eq. (14), must coincide with 
AB S (k⃗1⊥ , ⃗k2⊥ ), Eq. (15). If the LF wave function is found from 
Eq. (10) and the BS amplitude is found from Eq. (7), then AL F and 
AB S differ because of different input in the kernels of Eqs. (10)
and (1). The comparison of AL F with AB S shows the influence of 
the many-body intermediate states on the k⊥ -dependence of the 
amplitude AB S .

5. The two lowest-lying levels

In this section we present the numerical results for the ground 
and first excited states. Both LF and BS equations are solved 
by means of spline decomposition and the results are presented 
within the convergence ! 3%, which is enough for our purposes.

We expect that the spectra of both equations are rather rich. 
However, as we said, we restrict ourselves to two low-lying states. 
The LF equation (10) determines the value M2

3. The situation with 
the BS equation (7) is the same. At a first glance, the BS equa-
tion determines M3 in the first degree. However, the change of the 
sign M3 → −M3 is equivalent to the complex conjugation, which 
does not change the real eigenvalues. Hence, Eq. (7) also deter-
mines M2

3. Though M2
3 originally appears as squared, when this 

parameter is found from the equations, it can have any sign. The 
relativistic effects eliminate the Thomas collapse, i.e., they do not 
allow the eigenvalues M2

3 to decrease down to −∞, though they 
do not prevent the value of M2

3 from being negative for strong 
enough two-body interaction. It turns out that “strong enough” is 
already the interaction forming a two-body state with the bind-
ing energy close to zero –  it provides negative M2

3 for the ground 
state. However, when we further weaken the two-body interac-
tion (the scattering length becomes negative and then |a| → 0), 
the ground state value of M2

3 becomes positive and then M3 → 3m
(B3 = 3m − M3 → 0), i.e., the three-body bound states disappear. 
The plot of M2

3 vs. the inverse scattering length (a m)−1 is shown 
in Fig. 4. Note that in the previous papers [4,5] just the “LF-excited 
state” was studied. Our present calculations confirm the values M2

3
vs. M2 found in [5].
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Fig. 6. The BS amplitude v E (kv , k4) vs. k4 and vs. kv normalized to Re[v E (k4 = 0, kv/m = 3)] = 1. Solid (ground state) and dashed (exited state) curves are Re[v E (kv/m =
3, k4)] (left panel) and Re[v E (kv , k4/m = 3)] (right panel); dot-dashed (ground state) and dot–dot-dashed (exited state) curves are Im[v E (kv/m = 3, k4)] (left panel) and 
Im[v E (kv , k4/m = 3)] (right panel).

Fig. 7. k⊥-dependences of the Faddeev components of the LF and Euclidean am-
plitudes for the same binding energy, B3/m = 1. The solid and dot-dashed curves 
are the BS calculations (Eq. (15)) for the ground and first excited state, respectively. 
The dashed and dash–dash-dotted curves are the LF calculations (Eq. (14)), for the 
ground and first excited state, respectively.

ground one, though BS and LF asymptotics look slightly different 
from each other.

7. Conclusion

We have found the ground and first excited state solutions for 
the three-boson system with zero-range interaction in the frame-
work of two relativistic approaches: Bethe–Salpeter equation in 
the Euclidean space and light-front dynamics. In the BS frame-
work, the solution was found for the first time. Our input is the 
two-body scattering length (or binding energy), the output is the 
three-body binding energies, the light-front wave functions and 
Bethe–Salpeter amplitudes.

We confirmed the value of binding energy found previously [5]
in the LF framework. In addition, we found that the calculations 
[4,5] dealt with the first excited state, though for the two-body in-
teraction which allows the two-body bound state (used in [4,5]), 
there is a three-body ground state but with non-physical negative 
squared mass, M2

3 < 0. This solution formally exists, but not as a 
physical state. The negative (though finite) M2

3 can be interpreted 
as collapse of a relativistic system. However, for a two-body inter-
action characterized by negative scattering length (i.e. no two-body 
bound state), the aforementioned three-body state becomes phys-
ical, i.e. having positive M2

3. We get a strongly bound Borromean 
system for the negative scattering length, that is rather curious. 
Another way to avoid the negative M2

3 is to introduce a cutoff. 
We expect that a cutoff can also weaken the two-body interaction 
and make M2

3 positive. By a further decrease of the two-body in-

teraction the three-body binding energy tends to zero so that the 
three-boson system becomes unbound.

We have also found that in spite of the same zero-range in-
teraction, the dynamical contents in both approaches – BS and 
LF – are different. Relative to the LF dynamics, the BS approach 
implicitly takes into account the antiparticles and the many-body 
intermediate states which generate the effective three-body forces 
of the relativistic origin, like it happens for the OBE kernel [7], 
but with smaller diversity of the graphs contributing to three-body 
forces. However, their net effects are the same – the increase of the 
effective attraction and, consequently, the binding energy in the BS 
framework with respect to the LF one. At the same time, the fully 
relativistic effects in both frameworks are the effective repulsion, 
eliminating the Thomas collapse [1] in a three-boson system. This 
was found earlier in the LF approach [4,5]. In the present paper 
this is confirmed also in the BS approach.

A comparison of the LF wave function with the Euclidean BS 
amplitude cannot be done directly, since these quantities have dif-
ferent nature and physical meaning. However, as it is shown in 
Sec. 4, the integrals calculated from both quantities, either over x, 
or over k− and kz , represent one and the same amplitude depend-
ing on transverse momenta (provided, the underlying dynamics is 
the same). At the same time, the contributions from three-body 
forces discussed in Sec. 3, that make different the binding ener-
gies, also affect the k⊥-amplitudes. We compared these amplitudes 
for the same binding energy B3 of the three-body system and we 
found that in the BS approach the k⊥-distributions are somewhat 
wider than in the LF one.

The solutions and observations found in this work deepen our 
understanding of the role of relativistic effects in three-body sys-
tems. This research can be generalized to systems with non-equal 
masses [13], which naturally may have a richer spectrum.
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propagators. Following Ref. [7], we represent the propagator [k2 �m2 + i✏]�1 as

1

k2 �m2 + i✏
=

1

k2
0 � k2

v �m2 + i✏
= PV

1

k2
0 � "2k

� i⇡

2"k
[�(k0 � "k) + �(k0 + "k)], (4)

where "k =
p
k2
v +m2 and kv = |~k|. Then we eliminate the singularity in PV

R
. . . dk0

k20�"2k
,

subtracting, with appropriate coe�cients, the identities

PV

Z 0

�1

dk0
k2
0 � "2k

= PV

Z 1

0

dk0
k2
0 � "2k

= 0, (5)

As for the second propagator in (1), we integrate it, in the c.m.-frame ~p = 0, over z =

cos
⇣

~k·~q
kvqv

⌘
(and multiply it by 2⇡ from the azimuthal angle integration). The result reads:

⇧(q0, qv, k0, kv) =

Z
idzd'

[(p� q � k)2 �m2 + i✏]
=

i⇡

qvkv

⇢
log

����
(⌘ + 1)

(⌘ � 1)

����� i⇡I(⌘)

�
, (6)

with

I(⌘) =

⇢
1 if | ⌘ |  1
0 if | ⌘ | > 1

, (7)

and

⌘ =
(M3 � q0 � k0)2 � k2

v � q2v �m2

2qvkv
. (8)

The log-singularity in (6) can be then integrated numerically, using a numerical receipt (see
below).

After these transformations, the equation (1) for the the Faddeev component of the three-
body vertex function in the rest frame (~p = 0) obtains the form:

v(q0, qv) =
F(M12)

(2⇡)4

Z 1

0

k2
vdkv

⇢
2⇡i

2"k
[⇧(q0, qv; "k, kv)v("k, kv) + ⇧(q0, qv;�"k, kv)v(�"k, kv)]

� 2

Z 0

�1
dk0


⇧(q0, qv; k0, kv)v(k0, kv)� ⇧(q0, qv;�"k, kv)v(�"k, kv)

k2
0 � "2k

�

� 2

Z 1

0

dk0


⇧(q0, qv; k0, kv)v(k0, kv)� ⇧(q0, qv; "k, kv)v("k, kv)

k2
0 � "2k

��
, (9)

The integrand here, in contrast to the integrand of (1), is not singular anymore at k0 = ±"k.
The kernel ⇧ defined in Eq. (6) has logarithmic singularities at ⌘ = ±1. For fixed values of

q0, qv and kv, the singular points for ⇧(q0, qv, k0, kv) v.s. k0 are

k0 = (M3 � q0) +
p
m2 + (kv ± qv)2

k0 = (M3 � q0)�
p

m2 + (kv ± qv)2 (10)
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Direct solution in Minkowski space

Generalization of the technique used in the two-boson problem in ladder approximation
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Figure 1: The vertex function, v(q0, qv = 0.5m) with respect to q0 for the parameters am = �1.5 and B3/m =
0.395. The analytical positions of the peaks, given in Eq. (13), are shown with dashed lines.

corresponding Euclidean result. It seen that the results are in good agreement with each other.
As is clearly visible in Fig. 1, the vertex v(q0, qv) v.s. q0 is a non-smooth function. Despite of
this, the obtained transverse amplitude v.s. k? is smooth.
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Figure 2: Transverse contribution, L1(k1?, k2? = 0), obtained in Minkowski space compared with the one
computed in Euclidean space [10], for the parameters am = �1.5 and B3/m = 0.395.
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Comparison of transverse amplitudes for 
Euclidean and Minkowski space calculations

Similarly, the singular points of the kernel ⇧(q0, qv,±"k, kv) v.s. kv are given by

kv =
±
p
M2

12(M
2
12 + q2v)(M

2
12 � 4m2)± qvM2

12

2M2
12

, (11)

where M2
12 = (M3 � q0)2 � q2v . The expression under the square root is non-negative if

M2
12 � 4m2 or M2

12  0.

Consequently, real singular points kv exist if

q0 < M3 �
p
q2v + 4m2 or M3 � qv < q0 < M3 + qv or q0 > M3 +

p
q2v + 4m2. (12)

The transition points in the variable q0 between two regimes (with and without singularities
v.s. kv) are thus

q(1)0 =M3 �
p

q2v + 4m2,

q(2)0 =M3 � qv,

q(3)0 =M3 + qv,

q(4)0 =M3 +
p

q2v + 4m2,

(13)

with q(1)0 < q(2)0 < q(3)0 < q(4)0 , and they coincide with the transition points of the two-body
amplitude F (M12), see Eq. (2).

3. Transverse amplitudes

The Minkowski vertex function v(q0, qv) cannot be directly compared with the corresponding
Euclidean one. However, in the BS amplitude, one can instead of k = (k0, kv) introduce the
Light-Front variables k = (k�, k+,~k?), where k⌥ = k0 ⌥ kz and ~k? = (kx, ky). The double
integrals of the Minkowski BS amplitude over k+ and k�, and of the corresponding Euclidean
one over k4, kz, are then the same (up to a Jacobian).

The BS amplitude can be written in terms of the three vertex components as

i�M(k1, k2, k3; p) = i3
vM(k1) + vM(k2) + vM(k3)

(k2
1 �m2 + i✏)(k2

2 �m2 + i✏)(k2
3 �m2 + i✏)

, (14)

where the four momenta obey the relation

k1 + k2 + k3 = p. (15)

We subsequently define the transverse amplitude as the integral

L(~k1?,~k2?) = L1(~k1?,~k2?) + L2(~k1?,~k2?) + L3(~k1?,~k2?) =Z 1

�1
dk10

Z 1

�1
dk1z

Z 1

�1
dk20

Z 1

�1
dk2z i�M(k10, k1z, k20, k2z;~k1?,~k2?).

(16)
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• Integral  Representation to solve Dyson-Schwinger in diferente gauges;

• Un-Wick rotation: BSE and SD - promissing tool allied to Integral Representations;

• NIR for bosonic and fermionic BSE: control of the LF singularities-fermions;

• Euclidean and Minkowski BSE for 3-bosons;

Perspectives
• Self-energies, quark-gluon vertex, ingredients from LQCD

(Oliveira, Paula, TF, de Melo, EPJC79(2019)116)….

• Confinement – How to include with Integral Representation?

• Beyond the pion, kaon, D, B, rho…, and the nucleon

• Form-Factors (preliminar), PDFs, TMDs, Fragmentation Functions...

Conclusions


