8th Workshop of the APS Topical Group on Hadronic Physics 10-12 April 2019 Denver, CO

Minkowski space 4D dynamics for hadrons

Tobias Frederico
Instituto Tecnológico de Aeronáutica
São José dos Campos - Brazil
tobias@ita.br

Thanks to:

BS amplitude \rightarrow beyond the valence

Form-factors, DVCS in ERBL - DGLAP regions

Fragmentation function

BSE for for fermion-antifermion: 0^{-}state

Ladder approximation (L): suppression of XL (non-planar diagram) for $N_{c}=3$
[A. Nogueira, CR Ji, Ydrefors, TF, PLB 777 (2018) 2017]
Vector $\quad i \mathcal{K}_{V}^{(L d) \mu \nu}\left(k, k^{\prime}\right)=-i g^{2} \frac{g^{\mu \nu}}{\left(k-k^{\prime}\right)^{2}-\mu^{2}+i \epsilon}$
Vertex Form-Factor

$$
F(q)=\frac{\mu^{2}-\Lambda^{2}}{q^{2}-\Lambda^{2}+i \epsilon}
$$

BS amplitude fermion-antifermion: 0^{-}

$$
\begin{aligned}
& \stackrel{\mathrm{P} / 2+\mathrm{k}}{\stackrel{\mathrm{P} / 2-\mathrm{k}}{ }} \boldsymbol{>} \\
& S_{1}=\gamma_{5} \quad S_{2}=\frac{1}{M} p(k, p)=S_{5} \phi_{1}+S_{2} \phi_{2}+S_{3} \phi_{3}+S_{4} \phi_{4} \\
& M^{3} p \not p \gamma_{5}-\frac{1}{M} k k \gamma_{5} \quad S_{4}=\frac{i}{M^{2}} \sigma_{\mu \nu} p^{\mu} k^{\nu} \gamma_{5}
\end{aligned}
$$

Nakanishi Integral Representation (NIR)

$$
\phi_{i}(k, p)=\int_{-1}^{+1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} \frac{g_{i}\left(\gamma^{\prime}, z^{\prime}\right)}{\left(k^{2}+p \cdot k z^{\prime}+M^{2} / 4-m^{2}-\gamma^{\prime}+i \epsilon\right)^{3}}
$$

Kusaka and Williams, PRD 51 (1995) 7026 (bosons)
Light-front projection: integration in k^{-}
Carbonell\&Karmanov EPJA27(2006)1;EPJA27(2006)11;
TF, Salme, Viviani PRD85(2012)036009;PRD89(2014) 016010,EPJC75(2015)398
(application to scattering)

Light-front projection:

integration over \boldsymbol{k}^{-}

Fermion-antifermion: Carbonell and Karmanov EPJA 46 (2010) 387

$$
\begin{gathered}
\psi_{L F}(\gamma, z)=\frac{1}{4}\left(1-z^{2}\right) \int_{0}^{\infty} \frac{g\left(\gamma^{\prime}, z\right) d \gamma^{\prime}}{\left[\gamma^{\prime}+\gamma+z^{2} m^{2}+\kappa^{2}(1-\right.} \\
\gamma=k_{\perp}^{2} \quad z=2 x-1 \quad \kappa^{2}=m^{2}-\frac{M^{2}}{4}
\end{gathered}
$$

LF singularities: de Paula, TF,Salmè, Viviani PRD 94 (2016) 071901

MOCK PION MODEL

W. de Paula, TF, Pimentel, Salmè, Viviani, EPJC 77 (2017) 764

- Gluon effective mass ~ $\mathbf{5 0 0} \mathbf{~ M e V}$ - Landau Gauge LQCD
[Oliveira, Bicudo, JPG 38 (2011) 045003;
Duarte, Oliveira, Silva, Phys. Rev. D 94 (2016) 01450240]
- Mquark~250 MeV
[Parappilly, et al, PR D73 (2006) 054504]
- $\Lambda / m=2$

Results

, 4 amplitudes in LF variables
, valence probability, decay constant
, momentum distributions
, Electromagnetic form factor

Light-front amplitudes

(B/m=1.35, $\left.\mu / m=2.0, \Lambda / m=1.0, \bar{m}_{q}=215 \mathrm{MeV}\right): f_{\pi}=96 \mathrm{MeV}$,

$$
P_{\text {val }}=0.68
$$

W. de Paula, et. al, in preparation

Valence distribution functions: longitudinal and transverse

W. de Paula, et. al, in preparation

$\mu / \mathrm{m}=1.50-\mathrm{B} / \mathrm{m}=1.250-\Lambda=2.00-$

Preliminary: Pion's electromagnetic form factor

Valence contribution renormalized to the charge

[1] Collection of R. Baldini, et al., Eur. Phys. J. C 11, 709 (1999); Nucl. Phys. A 666 \& 667, 3 (2000);
Thanks to Jorge Alvarenga Nogueira

Dyson-Schwinger equation in Rainbow ladder truncation from Euclidean to Minkowski: Un-Wick rotating

In collaboration with Duarte, de Paula, Maris,Shaoyang Ji, Nogueira, Ydrefors

$$
S^{-1}(p)=A\left(p^{2}\right) \not p-B\left(p^{2}\right)
$$

QED-like, Landau Gauge, bare vertices, massive vector boson, Pauli-Villars regulator
Wick-rotated SD equation

$$
\begin{aligned}
& A\left(p_{0}, \vec{p}^{2}\right)=1+g^{2} \int_{-\infty}^{\infty} d k_{0} \int \frac{d^{3} k}{(2 \pi)^{4}} \frac{A\left(k_{0}, \vec{k}^{2}\right) K^{A}\left(p_{0}, k_{0}, \vec{p}, \vec{k}, \vec{p} \cdot \vec{k}\right)}{\left(k_{0}^{2}+\vec{k}^{2}\right) A^{2}\left(k_{0}, \vec{k}^{2}\right)+B^{2}\left(k_{0}, \vec{k}^{2}\right)} \\
& B\left(p_{0}, \vec{p}^{2}\right)=m_{0}+g^{2} \int_{-\infty}^{\infty} d k_{0} \int \frac{d^{3} k}{(2 \pi)^{4}} \frac{B\left(k_{0}, \vec{k}^{2}\right) K^{B}\left(p_{0}, k_{0}, \vec{p}, \vec{k}, \vec{p} \cdot \vec{k}\right)}{\left(k_{0}^{2}+\vec{k}^{2}\right) A^{2}\left(k_{0}, \vec{k}^{2}\right)+B^{2}\left(k_{0}, \vec{k}^{2}\right)}
\end{aligned}
$$

Un-Wick rotation: $\quad k_{0} \rightarrow k_{0} \exp \imath\left(\theta-\frac{\pi}{2}\right) \quad p_{0} \rightarrow p_{0} \exp \imath\left(\theta-\frac{\pi}{2}\right)$
Euclidean $\theta=\frac{\pi}{2}$
Minkowski $\theta=0$

Parameters $\quad m_{0}=0.5 \quad \mu=1 \quad \alpha=0.3 \quad \Lambda=10$

Spectral Representation (Nakanishi Integral representation)

$$
\begin{gathered}
\Sigma_{\text {scalar }}\left(p^{2}\right)=B\left(p^{2}\right)-m_{0}=\int_{0}^{\infty} \frac{\rho_{B}(s)}{p^{2}-s+\imath \epsilon} \\
\rho_{B}(s)=-\operatorname{Im}[B(s) / \pi]
\end{gathered}
$$

Relativistic Three-body Bound states with contact interaction

TF, PLB 282 (1992) 409

$F\left(M_{12}\right)= \begin{cases}\frac{8 \pi^{2}}{\frac{1}{2} \log \frac{1+y_{12}^{\prime}}{1-y_{M_{12}}^{\prime}}-\frac{\pi}{2 a m}}, \quad \text { if } M_{12}^{2}<0 \\ \frac{1}{y_{M_{12}}^{\prime}} & \text { The LF projection in the NREL limit }\end{cases}$ reduces to the SKTM equation!

$$
\frac{8 \pi^{2}}{\frac{\arctan }{y_{M_{12}}}-\frac{\pi}{2 a m}}, \quad \text { if } 0 \leq M_{12}^{2}<4 m^{2}
$$

Euclidean space solution

Ydrefors, Alvarenga Nogueira, TF, Karmanov PLB 770 (2017)131
Wick rotation after the transformation $\quad k=k^{\prime}+\frac{1}{3} p, \quad q=q^{\prime}+\frac{1}{3} p$.

Ydrefors, Alvarenga Nogueira, TF, Karmanov PLB 770 (2017)131

Faddeev-BSE in Eucl. space vs.
Truncation in the LF valence sector
V.A. Karmanov, P. Maris, Few-Body Syst. 46 (2009) 95. LF Missing induced three-body forces
E. Ydrefors et al. / Physics Letters B 770 (2017) 131-137

Fig. 2. The three-body LF graphs obtained by time-ordering of the Feynman graph shown in right panel of Fig. 1.

Transverse amplitude

$$
A_{1}\left(k_{1 \perp}\right)=\int d k_{10}^{E} d k_{1 z} d k_{20}^{E} d k_{2 z} d^{2} k_{2 \perp} \Phi_{E}^{i=1}\left(k_{1}^{\mu}, k_{2}^{\mu}\right)
$$

Direct solution in Minkowski space

Ydrefors, Alvarenga Nogueira, Karmanov and TF, PLB791 (2019) 276

Generalization of the technique used in the two-boson problem in ladder approximation Carbonell and Karmanov PRD90(2014) 056002

$$
\begin{align*}
& v\left(q_{0}, q_{v}\right)=\frac{\mathcal{F}\left(M_{12}\right)}{(2 \pi)^{4}} \int_{0}^{\infty} k_{v}^{2} d k_{v}\left\{\frac{2 \pi i}{2 \varepsilon_{k}}\left[\Pi\left(q_{0}, q_{v} ; \varepsilon_{k}, k_{v}\right) v\left(\varepsilon_{k}, k_{v}\right)+\Pi\left(q_{0}, q_{v} ;-\varepsilon_{k}, k_{v}\right) v\left(-\varepsilon_{k}, k_{v}\right)\right]\right. \\
& -2 \int_{-\infty}^{0} d k_{0}\left[\frac{\Pi\left(q_{0}, q_{v} ; k_{0}, k_{v}\right) v\left(k_{0}, k_{v}\right)-\Pi\left(q_{0}, q_{v} ;-\varepsilon_{k}, k_{v}\right) v\left(-\varepsilon_{k}, k_{v}\right)}{k_{0}^{2}-\varepsilon_{k}^{2}}\right] \\
& \left.-2 \int_{0}^{\infty} d k_{0}\left[\frac{\Pi\left(q_{0}, q_{v} ; k_{0}, k_{v}\right) v\left(k_{0}, k_{v}\right)-\Pi\left(q_{0}, q_{v} ; \varepsilon_{k}, k_{v}\right) v\left(\varepsilon_{k}, k_{v}\right)}{k_{0}^{2}-\varepsilon_{k}^{2}}\right]\right\}, \tag{9}\\
& v\left(q_{0}, q_{v}=0.5 m\right)\left(\begin{array}{cc:c:c}
1.2 \\
\hline
\end{array}\right.
\end{align*}
$$

Comparison of transverse amplitudes for Euclidean and Minkowski space calculations

$$
\int_{-\infty}^{\infty} d k_{10} \int_{-\infty}^{\infty} d k_{1 z} \int_{-\infty}^{\infty} d k_{20} \int_{-\infty}^{\infty} d k_{2 z} i \Phi_{M}\left(k_{10}, k_{1 z}, k_{20}, k_{2 z} ; \vec{k}_{1 \perp}, \vec{k}_{2 \perp}\right) .
$$

Conclusions

- Integral Representation to solve Dyson-Schwinger in diferente gauges;
- Un-Wick rotation: BSE and SD - promissing tool allied to Integral Representations;
- NIR for bosonic and fermionic BSE: control of the LF singularities-fermions;
- Euclidean and Minkowski BSE for 3-bosons;

Perspectives

- Self-energies, quark-gluon vertex, ingredients from LQCD (Oliveira, Paula, TF, de Melo, EPJC79(2019)116)....
- Confinement - How to include with Integral Representation?
- Beyond the pion, kaon, D, B, rho..., and the nucleon
- Form-Factors (preliminar), PDFs, TMDs, Fragmentation Functions...

