Study of Λ Fragmentation in Current and Target Regions using CLAS

Taya Chetry

Lamiaa El Fassi Mississippi State University

> GHP 2019 Denver, Colorado 04/10/2019

Outline

- Hadronization
 - •Previous measurements
- The EG2 experiment @ JLab
- Preliminary results
- Future directions

Probing QCD Dynamics

• Hadronization process:

- Evolution of a colored bare quark into a fully dressed hadron.
- A direct probe of the QCD confinement dynamics: quark propagation and fragmentation.

Depending on the size of nucleus, hadron formation can take place inside or outside the nucleus.

3 GHP 2019

Taya Chetry

A Fragmentation Study 04/10/2019

Probing QCD Dynamics

- Hadronization Timescales:
 - Production time, τ_p: Time spent by a deconfined quark to neutralize its color charge.
 - Formation time, τ_f : Time required to form a regular hadron.

- Hadronization studies:
 - Provide information on the dynamical scales of the process.
 - Constrain existing models that provide predictions of its timecharacteristics.

SIDIS Production

Semi-Inclusive Deep Inelastic Scattering (SIDIS) is used to gain access to physical observables.

5

04/10/2019

Experimental Observables

• Multiplicity ratio:

$$R_{\rm A}^{h}\left(\nu, Q^{2}, z, p_{T}, \phi\right) = \frac{\frac{N_{h}(\nu, Q^{2}, z, p_{T}, \phi)}{N_{e}(\nu, Q^{2})|_{\rm DIS}}\Big|_{\rm A}}{\frac{N_{h}(\nu, Q^{2}, z, p_{T}, \phi)}{N_{e}(\nu, Q^{2})|_{\rm DIS}}\Big|_{\rm D}}$$

- Normalization with the electron DIS events that permits cancellation of the initial state effects.
- Transverse momentum broadening:

$$\Delta P_T^2 = \left\langle P_T^2 \right\rangle_A - \left\langle P_T^2 \right\rangle_D$$

D = loosely bound nuclei A = Heavy Nuclei

- These observables provide insight about
 - Parton energy loss and hadron attenuation.
 - The hadronization timescales.
 - Hadronization with respect to nucleus size.

HERMES Multiplicity Ratios

A. Airapetian et al.

Phys.Lett., vol. B684, pages 114-118, 2010

Positron beam, $E_{beam} = 27 \text{ GeV}$

- All pion flavors and K⁻ experience similar attenuation.
- K^+ is less attenuated compared to π^+ most likely due to a contamination from $\pi + p \rightarrow \Lambda + K$ (B. Kopeliovich *et al.*) from the target fragmentation.

HERMES Multiplicity Ratios

A Fragmentation Study

HERMES Transverse Momentum Broadening

Previous measurements

- Reduced broadening at high z favors no prehadron interaction.
- $K^+ P_T$ broadening is different compared to that of the pions \rightarrow Flavor dependence?
- Similar effect for nuclear size dependencies \rightarrow Calls for more data?

CLAS @ JLab

- Jefferson Lab: Newport News, VA;
- CEBAF: accelerated electrons up to 6 GeV;
- Experimental Halls: A, B, C (and D, 12 GeV upgrade);
- Hall B: electron or photon beam;

A Fragmentation Study 04/10/2019

CLAS EG2 Dataset

- Targets: Deuterium, Carbon, Iron, Lead, Tin, Aluminum.
- Deuterium and solid target in beam simultaneously for improved systematics:

11 *GHP 2019*

Taya Chetry

 Λ Fragmentation Study

04/10/2019

Reaction Channel

• SIDIS

- $e + A \rightarrow e' + \Lambda$
- Scattered electron and Lambda decay products detected.
- $\Lambda \rightarrow \pi^{-} + p$
 - ~64% branching ratio
- e^{-} and π^{-} identification:
 - Method:
 - L. El Fassi (CLAS Collaboration),
 - Physics Letters B 712 (2012) 326-330.
 - e⁻: Positive response in the four CLAS subsystems, i.e. DC, CC, SC and EC.
 - π : Matching signal in drift chambers (DC) and scintillator counters (SC).

Proton Identification

- Matching signal in DC and SC.
- Timing versus momentum dependent study to select proton candidates.

Reaction Vertex

• Simultaneous targets: Necessary to correctly reconstruct the reaction vertex.

• All identified particles underwent the vertex correction.

Selection of SIDIS Events: Kinematic Cuts

- $Q^2 > 1$ (4-momentum transfer)
- W > 2 (Hadronic mass)
- y < 0.85 (Struck Quark Energy Fraction)

Production Channel

- Reconstruct Λ via its decay products $\pi^{\scriptscriptstyle -}$ and p.
- Perform various sanity checks of the background subtraction and yield extraction techniques.

- <u>First method</u>: Polynomial (for background) + Breit-Wigner (for signal).
- <u>Second method</u>: Combinatorial background + Breit-Wigner using side-band normalization.
- <u>Third method:</u> Combinatorial background + Breit-Wigner based on MINUIT minimization (RooFit).
 See also Sereres Johnston's talk:

04/11 @ 2:40 pm in Director's Row H

04/10/2019

 Λ Fragmentation Study

Λ Yield Extraction

- A sample z-bin: A invariant mass distribution for the liquid (left) and solid (Fe)(right) using the third method.
- z: fraction of the struck quark's initial energy carried by the formed hadron

 $\mathbf{Z} = [0.48, 0.54)$

Multiplicity Ratio

• First ever study of the hadronization process of Λ hyperon which probes the forward (current) and backward (target) fragmentation regions.

Transverse Momentum Broadening (z-dependence)

Taya Chetry

 Λ Fragmentation Study

Transverse Momentum Broadening (A-dependence)

Taya Chetry

 Λ Fragmentation Study

CLAS12 @ JLab

With 12 GeV upgrade of the CEBAF: accelerate electrons up to 11 GeV in Hall B.

Actively underway with existing 5 GeV data							
meson	сτ	mass	flavor content	baryon	сτ	mass	flavor content
π^0	25 nm	0.13	uudd	p	stable	0.94	ud
π^+,π	7.8 m	0.14	ud, du	\bar{p}	stable	0.94	ud
η	170 pm	0.55	uuddss	\frown	79 mm	1.1	uds
ω	23 fm	0.78	uuddss	A(1520)	13 fm	1.5	uds
η'	0.98 pm	0.96	uuddss	Σ^+	24 mm	1.2	us
ϕ	44 fm	1.0	uuddss	Σ^{-}	44 mm	1.2	ds
f1	8 fm	1.3	uuddss	Σ^0	22 pm	1.2	uds
K	27 mm	0.50	ds	Ξ^0	87 mm	1.3	us
<i>K</i> ⁺ , <i>K</i> ⁻	3.7 m	0.49	us, us	Ξ	49 mm	1.3	ds

DIS channels: stable hadrons accessible with the CLAS12 detector

• Span a wider range of nuclei masses \rightarrow Better understanding of A dependence;

- Study of various hadrons production \rightarrow Improve our understanding of hadron's formation mechanism.
- Higher statistical precision \rightarrow Multi-dimensional study of physics observables dependencies for a comprehensive extraction of the production and formation time scales.

Summary

- Hadronization study is a direct probe of QCD confinement dynamics.
- Preliminary results for Multiplicity ratios for Fe, C and Pb targets.
- Preliminary Transverse Momentum Broadening.
- Next steps in current work would include:
 - Acceptance corrections, Radiative corrections, Systematic Studies.
 - Study other dependencies of R_{Λ} , P_{T}^{2} , Cronin effect, etc.
- A detailed comprehensive study of the hadronization mechanism with the upcoming CLAS12 experiment is crucial to constrain the competing theoretical models and extract the characteristic time scales.

~ Acknowledgment ~ This work is supported in part by the US Department of Energy contract # DE-FG02-03ER41528

04/10/2019

Thank you!!

Extras

CLAS 6: Hadronization results on Meson channels

Taya Chetry

 Λ Fragmentation Study

CLAS 6: Hadronization results on Meson channels

CLAS-6 transverse momentum broadening results for charged pions shows a similar behavior First time ever to study the hadronization process of Λ⁰ hyperon and probe the forward (current) and backward (target) fragmentation regions.

D2/Fe/C/Pb: DIS Λ^0

Taya Chetry

 Λ Fragmentation Study

04/10/2019