# Preliminary Results on H(e,e') and D(e,e') Cross Sections from an Early 12 GeV Hall C Experiment at Jefferson Lab: E12-10-002

Simona Malace Jefferson Lab





### Outline

- > Expected physics output:
  - → constraints for PDF global fits
- → quark-hadron duality studies and push to get the theory community to pursue a fundamental understanding of the phenomenon
  - $\rightarrow$  non-singlet moments to higher Q<sup>2</sup>
  - → modeling of resonance and deep inelastic scattering process
- > Analysis:
  - → experimental setup and kinematic coverage
  - → detector performance
  - → analysis highlights
- Preliminary results:
  - → cross sections and D/H ratios

### Constraints for PDFs

#### **Theory-experiment Collaboration**:



Performs global QCD fits of PDFs from data including deep-inelastic lepton-nucleon scattering, proton-proton collisions (lepton pair creation, W-boson and jet production), etc., with particular focus on the large-x region



- Include non-perturbative corrections: data with low W are used
- Include nuclear corrections: use of deuterium data requires careful treatment of nuclear corrections

### Constraints for PDFs

#### **Theory-experiment Collaboration**:



Performs global QCD fits of PDFs from data including deep-inelastic lepton-nucleon scattering, proton-proton collisions (lepton pair creation, W-boson and jet production), etc., with particular focus on the large-x region







### Constraints for PDFs

#### **Theory-experiment Collaboration**:



#### (One of the many) Highlights: Improvement in uncertainty of d/u extraction





Deuterium data allow for precise determination of d/u

D0 asymmetries determine the "free nucleon" d-quark AND Deuterium data determine the off-shell correction

### Quark – Hadron Duality

Complementarity between *quark* and *hadron* descriptions of observables

$$\sum_{hadrons} = \sum_{quarks}$$

Can use either set of complete basis states to describe all physical phenomena

### Quark – Hadron Duality

Quark – hadron duality: fundamental property of nucleon structure



➤ Jefferson Lab 6 GeV experiment, E00-116, pushed duality studies to higher Q² and highlighted an obvious, fundamental question: what's an appropriate scaling curve to verify duality?





> Jefferson Lab 6 GeV experiment, E00-116, pushed duality studies to higher Q<sup>2</sup> and highlighted an obvious, fundamental question: what's an appropriate scaling curve to verify duality?



> Poorly constrained PDFs at large x hinder verification of quark-hadron duality at high Q<sup>2</sup>



> Poorly constrained PDFs at large x hinder verification of quark-hadron duality at high Q<sup>2</sup>

Resonance region data average to MSTW08 at a  $Q^2$  of 0.9 GeV<sup>2</sup> but not at 6.4 GeV<sup>2</sup>?!?!



This is not a violation of duality but due to the underestimation of PDFs strength at large x

> Appropriate scaling curve for quark-hadron duality verification: PDF fits better constrained at large x

→ Early 2000s: few collaborations (ABKM and then CJ) extended their PDF extraction to larger x by lowering the W² kinematic cut to include more large x DIS data





Duality verified against scaling curve from ABKM



Duality verified against scaling curve from ABKM



The Q<sup>2</sup> dependence is what matters, right?



# Future Duality Studies in F<sub>2</sub> – E12-10-002

➤ Jefferson Lab experiment E12-10-002: pushing duality studies to even higher Q² and reviving the discussion on what's an appropriate scaling curve and scaling variable for duality studies





- Test duality for various scaling curves and scaling variables
- Perfect duality averaging procedures to include duality averaged data in PDF fits

# E12-10-002: Setup and Kinematic Coverage



(SHMS)

→ Measured positrons at: 59 deg (HMS) and 39, 29, 21 deg

### **Analysis Flow and Status**

We finished taking data in March of 2018

#### done

- 1. Timing Cuts
- 2. Calibrations
  - BCM
  - Hodoscope
  - Drift Chamber
  - Calorimeter
  - Cherenkov

#### in progress

- 3. Efficiency Studies
  - Tracking Efficiency Study (DC)
  - Trigger Efficiency Study
  - Computer Dead Time
  - Calorimeter and Cherenkov Cut Efficiency
  - Pion Contamination

#### in progress

- 4. Charge Symmetric Background (measured)
- 5. Spectrometers Acceptance Study
- 6. Radiative corrections
- 7. Cross Section Calculation



### Timing Cuts

- Both TDC1190s and F250s used in the Hall C DAQ system have multi-hit capability
- ➤ Timing cuts are needed to select those hits per event that are in time with the trigger (only one hit per event is selected)
- ➤ Timing cuts are applied for every detector channel; this is a very important first step in the analysis











### Calibrations: Calorimeter



Electrons peak at 1 after calibration because they deposit their entire energy in the calorimeter

All calorimeter blocks appear to be well calibrated



### Calibrations: Calorimeter



### Efficiencies: Particle Identification Detector Cuts

Example: SHMS at E' = -2.1 GeV and theta = 33 deg



### Efficiencies: Calorimeter Cut

- A "clean" sample of electrons is selected with a tight Cherenkov cut; only those electrons that went through the part
  of the trigger that did not involve the calorimeter are selected (ELLO without PRLO)
- Then the effect of the calorimeter > 0.7 cut is tested on this sample
- The cut efficiency is obtained per momentum setting by extrapolating to zero pion/electron ratio
- → calorimeter cut efficiency is high



### Efficiencies: Cherenkov Cut



- A "clean" sample of electrons is selected with a tight calorimeter cut; only those electrons that have made it through the ELHI trigger leg (no Cherenkov input) are used
- The Cherenkov npe > 2. cut is tested on this sample
- The cut efficiency is obtained by extrapolating to zero pion/electron ratio
- → The Cherenkov cut efficiency is high

### Efficiencies: Cherenkov Cut



- A "clean" sample of electrons is selected with a tight calorimeter cut; only those electrons that have made it through the ELHI trigger leg (no Cherenkov input) are used
- The Cherenkov npe > 2. cut is tested on this sample
- The cut efficiency is obtained by extrapolating to zero pion/electron ratio
- → The Cherenkov cut efficiency is high

NGC cut efficiency vs x (SHMS E' = -5.1 GeV, theta = 21 deg)



# Charge Symmetric Background

ightharpoonup e<sup>+</sup>/(e<sup>+</sup>+e<sup>-</sup>) from model based on fit from SLAC to  $\pi^+$  and  $\pi^-$  production



# Charge Symmetric Background

ightharpoonup e<sup>+</sup>/(e<sup>+</sup>+e<sup>-</sup>) from model based on fit from SLAC to  $\pi^+$  and  $\pi^-$  production

> We measured:

| Angle | Momentum(GeV/c) |  |  |  |  |
|-------|-----------------|--|--|--|--|
| 21    | 2.7             |  |  |  |  |
| 29    | 2.0, 2.7        |  |  |  |  |
| 39    | 1.3, 1.8        |  |  |  |  |



### Charge Symmetric Background

ightharpoonup e<sup>+</sup>/(e<sup>+</sup>+e<sup>-</sup>) from model based on fit from SLAC to  $\pi^+$  and  $\pi^-$  production

➤ We measured:

| Angle | Momentum(GeV/c) |  |  |  |  |
|-------|-----------------|--|--|--|--|
| 21    | 2.7             |  |  |  |  |
| 29    | 2.0, 2.7        |  |  |  |  |
| 39    | 1.3, 1.8        |  |  |  |  |







### **Cross Section Extractions**



$$\sigma_{data} = \frac{Yield_{data}}{Yield_{MC}} * \sigma_{MC}$$



### Preliminary Cross Sections: H(e,e')





Overlap between each momentum setting looks good
 → We understand the SHMS acceptance fairly well

### Preliminary Cross Sections: D(e,e')





- Overlap between each momentum setting looks good
  - → We understand the SHMS acceptance fairly well

### Ratios: D(e,e')/H(e,e')





The uncertainties shown are statistical and systematic (only the largest three contributors)

### Summary

- ➤ E12-10-002 ran in Hall C in Spring 2018 to measure H(e,e') and D(e,e') cross sections in the DIS and the resonance region regimes physics program has been completed
- ➤ We expect a varied and exciting physics output: PDF extractions, QHD studies, non-singlet moments and comparisons to LQCD if calculations become available at higher Q², resonance and DIS modeling...
- Analysis is progressing well and we hope to push out our first publication this year on D/H ratios and  $F_2^n/F_2^p$  extraction

#### Define duality intervals

| Region           | 1 <sup>st</sup> | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 4 <sup>th</sup> | DIS | global |
|------------------|-----------------|-----------------|-----------------|-----------------|-----|--------|
| W <sub>min</sub> | 1.3             | 1.9             | 2.5             | 3.1             | 3.9 | 1.9    |
| W <sub>max</sub> | 1.9             | 2.5             | 3.1             | 3.9             | 4.5 | 4.5    |

→ There is arbitrariness in defining the local W intervals; typically try to catch peaks and valleys within one interval

How well resonance data average to the scaling curve?

• Calculate ratio:

$$\int_{x_{min}}^{x_{max}} F^{data}(x, Q^2) dx / \int_{x_{min}}^{x_{max}} F^{param.}(x, Q^2) dx$$

