Experimental Searches for Light Exotica Precision and Progress

Sean Dobbs

Florida State U.

8th Workshop of the APS Topical Group on Hadronic Physics Denver, CO April 11, 2019

- Recent decades have lead to new renaissance in hadron spectroscopy
 - New high-intensity experiments
 - More rigorous theoretical tools
 - New avenues in understanding QCD through bound states

Open questions:

What is the origin of confinement?

- Recent decades have lead to new renaissance in hadron spectroscopy
 - New high-intensity experiments
 - More rigorous theoretical tools
 - New avenues in understanding QCD through bound states
- Open questions:
- What is the origin of confinement?
- Which color-singlet states exist in nature?

Events / 0.01 GeV/c²

- Recent decades have lead to new renaissance in hadron spectroscopy
 - New high-intensity experiments
 - More rigorous theoretical tools
 - New avenues in understanding QCD through bound states
- Open questions:
- What is the origin of confinement?
- Which color-singlet states exist in nature?
- Do gluonic degrees of freedom manifest themselves in the bound states that we observe?

- Recent decades have lead to new renaissance in hadron spectroscopy
 - New high-intensity experiments
 - More rigorous theoretical tools
 - New avenues in understanding QCD through bound states
- Open questions:
- What is the origin of confinement?
- Which color-singlet states exist in nature?
- Do gluonic degrees of freedom manifest themselves in the bound states that we observe?

Searching For Hybrid Mesons

- Wish: Unambiguous narrow Breit-Wigner peaks in a mass spectrum
- **Reality:** Must establish resonance nature by identifying pole parameters
 - Requires high-quality data in multiple channels and rigorous models: experimentalists and theorists working closely
- Meson QNs
 - Allowed: 0-+, 0++, 1--, 1+-, 2++, 2-+,...
 - Forbidden: 0--, 0+-, 1-+, 2+-, ...
- Hybrid Meson QNs
 - 0⁻⁺, 0⁺⁻, 1⁻⁻, 1⁻⁺, 2⁻⁺, 2⁺⁻, ...
- Hybrid mesons can be found with normal and exotic quantum numbers

$J=L+S P=(-1)^{L+1} C=(-1)^{L+S}$

"Normal" Meson

"Hybrid" Meson

Hybrid–Meson mass splitting ~ 1.0 – 1.5 GeV

HadSpec: Dudek, Edwards, Guo, Thomas, PRD 88, 094505 (2013)

HadSpec: Dudek, Edwards, Guo, Thomas, PRD 88, 094505 (2013)

Precision and Spectroscopy: BES III & J/ $\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

- Search by BES for resonances in $J/\psi \rightarrow \gamma \eta' \pi^+\pi^-$ in e⁺e⁻ annihilation
 - Structure seen near 2M(p)
 - More data suggests a richer spectrum of states

Precision and Spectroscopy: BES III & J/ $\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

- Search by BES for resonances in $J/\psi \rightarrow \gamma \eta' \pi^+\pi^-$ in e⁺e⁻ annihilation
 - Structure seen near 2M(p)
 - More data suggests a richer spectrum of states

Precision and Spectroscopy: BES III & $J/\psi \rightarrow \chi \eta' \pi^+\pi^-$

BES II: PRL 95, 262001 (2005)

ባጠ

58x10⁶ J/ψ

- Search by BES for resonances in $J/\psi \rightarrow \chi \eta' \pi^+\pi^-$ in e⁺e⁻ annihilation
 - Structure seen near 2M(p)
 - More data suggests a richer spectrum of states, but what is their nature?

S. Dobbs — GHP 2019 — April 11, 2019 — Experimental Searches for Light Exotica: Precision and Progess

X(1835)

 $J^{PC} = 0^{-}$

Precision and Spectroscopy: BES III & $J/\psi \rightarrow \chi \eta' \pi^+\pi^-$

160

BES II: PRL 95, 262001 (2005)

ብብሌ

58x10⁶ J/ψ

- Search by BES for resonances in $J/\psi \rightarrow \chi \eta' \pi^+\pi^-$ in e⁺e⁻ annihilation
 - Structure seen near 2M(p)
 - More data suggests a richer spectrum of states, but what is their nature?

S. Dobbs — GHP 2019 — April 11, 2019 — Experimental Searches for Light Exotica: Precision and Progess

X(1835)

 $J^{PC} = 0^{-}$

- Over 20 years of reported evidence for exotic J^{PC} mesons from many experiments.
 - Mass spectra generally look similar, but interpretations differ
 - π₁(1400) → ηπ
 - $\pi_1(1600) \rightarrow \eta' \pi$ and $\rho \pi$
 - $\pi_1(2015) \rightarrow f_1\pi$ and $\omega\pi\pi$

- Over 20 years of reported evidence for exotic J^{PC} mesons from many experiments.
 - Mass spectra generally look similar, but interpretations differ
 - π₁(1400) → ηπ
 - π₁(1600) → η'π and ρπ
 - $\pi_1(2015) \rightarrow f_1\pi$ and $\omega\pi\pi$

- Over 20 years of reported evidence for exotic J^{PC} mesons from many experiments.
 - Mass spectra generally look similar, but interpretations differ
 - π₁(1400) → ηπ
 - π₁(1600) → η'π and ρπ
 - $\pi_1(2015) \rightarrow f_1\pi$ and $\omega\pi\pi$

COMPASS: $\pi_1 \rightarrow \eta \pi / \eta' \pi$

- Over 20 years of reported evidence for exotic J^{PC} mesons from many experiments.
 - Mass spectra generally look similar, but interpretations differ
 - π₁(1400) → ηπ
 - π₁(1600) → η'π and ρπ
 - $\pi_1(2015) \rightarrow f_1\pi$ and $\omega\pi\pi$

COMPASS: $\pi_1 \rightarrow \eta \pi / \eta' \pi$

Extract resonance parameters with unitary reaction model

JPAC

A. Jackura et al. [JPAC and COMPASS Collaborations], PLB 779, 464 (2017)

Coupled Channel Fits in $\eta\pi/\eta'\pi$ @ COMPASS

- Coupled channel analysis for P-waves and D-waves
- High precision data & theoretical advances required to describe data

A. Rodas et al. (JPAC) [Phys. Rev. Lett. 122, 042002 (2019)]

S. Dobbs — GHP 2019 — April 11, 2019 — Experimental Searches for Light Exotica: Precision and Progess

PAC

Coupled Channel Fits in $\eta\pi/\eta'\pi$ @ COMPASS

- Coupled channel analysis for P-waves and D-waves
- High precision data & theoretical advances required to describe data

P/D-wave in $\eta \pi / \eta' \pi$

 $M(\pi_1) = 1564 \pm 24 \pm 86 \text{ MeV}$ $\Gamma(\pi_1) = 492 \pm 54 \pm 102 \text{ MeV}$

See: A. Rodas @ 10:30 AM Friday

A. Rodas et al. (JPAC) [Phys. Rev. Lett. 122, 042002 (2019)]

Searching in π - π - π + @ COMPASS

- Huge data set of ~50 M exclusive $\pi^- + p \rightarrow \pi^- \pi^+ \pi^- + p_{recoil}$ events
- Partial wave decomposition using 88 waves in bins of t

h/t S. Wallner, HADRON 2017

Searching in π - π - π + @ COMPASS

- Exotic 1-+ partial wave fit with strong resonant and non-resonant conts.
- π_1 contribution exhibits strong t-dependence

π⁻ **π**⁺ **π**⁻ @ COMPASS: J^{PC} = 2⁻⁺: π₂(1670), π₂(1880), π₂(2005)

- Observed 3 π₂ states: π₂(1670), π₂(1880), π₂(2005)
- Are these supernumerary states? Non-resonant contributions complicate interpretation.
 - Need more input from theory and experiment.

π⁻ **π**⁺ **π**⁻ @ COMPASS: J^{PC}= 1⁺⁺: a₁(1260), a₁(1420)

- Unexpected state seen in $f_0(980) \pi P$ -wave
- Much theoretical interest
- Can be described as Breit-Wigner or anomalous triangle singularity

M. Mikhasenko et al., PRD 91, 094015 (2015) F. Aceit et al., PRD 94, 09615 (2016)

Κ

π_____α_(1260)

π

π

Meson Photoproduction

- Extend search for hybrids in fresh, complementary production mechanism
- Photon couples to exchanged QN via VMD, generates mesons with wide variety of J^{PC}: all expected hybrids can be produced
- Little existing photoproduction data. Neutral final states at these energies are mostly unexplored
- Photon polarization provides constraints on production processes
- Detailed models for amplitude analysis needed to understand spectra

The GlueX Experiment

- 2016: 10 pb⁻¹ (~80 hours of physics-quality commissioning data)
 - **2017: 45 pb⁻¹** (used for most public results)
- 2018: ~150 pb⁻¹ GlueX Phase-I complete!

Polarization Observables at GlueX

- Measurements of linearly polarized photon observables yield key info needed for hybrid meson searches
- Beam asymmetries
 - $\gamma p \rightarrow p \pi^0$
 - γp → pη
 - $\gamma p \rightarrow p \eta'$
 - $\gamma p \rightarrow \Delta^{++} \pi^-$
 - $\gamma p \rightarrow \Sigma^0 K^+$
- Spin-density Matrix Elements
 - $\gamma p \rightarrow p \rho^0$
 - γ p → p ω
 - γ p → p φ
 - $\gamma p \rightarrow \Lambda(1520) \text{ K}^+$

Spectroscopy Prospects @ GlueX: $\gamma p \rightarrow p + \pi \eta$

M(2γ,pair 2) [GeV]

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

 $η π^0$

 $\pi^0\pi^0$

 $\eta \pi^0$

- πη / πη' promising channels for early hybrid searches
- With 20% of GlueX-I data, we see several well-known mesons
- Statistics are competitive with previous experiments

S. Dobbs — GHP 2019 — April 11, 2019 — Experimental Searches for Light Exotica: Precision and Progess

10³

10²

10

Spectroscopy Prospects @ GlueX: $\gamma p \rightarrow p + \pi \eta$

Counts/12 MeV/c²

6000

5000

4000

3000

2000

D

⁷⁰⁰⁰ a₀(980)

- πη / πη' promising channels for early hybrid searches
- With 20% of GlueX-I data, we see several well-known mesons
- Statistics are competitive with previous experiments

S. Dobbs — GHP 2019 — April 11, 2019 — Experimental Searches for Light Exotica: Precision and Progess

+ π - η , $\eta \rightarrow \gamma \gamma$

 $a_2(1320)$

GLUE

Preliminary

HadSpec: Dudek, Edwards, Guo, Thomas, PRD 88, 094505 (2013)

GlueX-II: Enter the DIRC

- To study hybrids containing strange quarks, need clean identification of charged pions and kaons
- New addition: **DIRC** (Detection of Internally Reflected Cherenkov light)
- Installation & commissioning currently underway

Summary

- New vistas have opened up in meson spectroscopy due to availability of large, high-quality data sets
- Close collaboration between experimentalists and theorists essential to map these spectra

See JPAC sessions Friday morning

- Identification of hybrid mesons opens the door to establishing contribution of gluonic excitations to meson spectrum
 - π₁(1600) pole positions determined from COMPASS data
 - Need to map out spectra in complementary production mechanisms
 - Photoproduction provides powerful tool to establish the full spectrum of hybrid mesons
- Expect contributions from many new experiments
 - Current: GlueX (γ), CLAS12 (γ/e⁻), BES-III (e⁺e⁻), ...
 - Upcoming: Belle-II (e+e⁻), PANDA (pp̄), ?

Backup Slides

The GlueX Experiment: Photon Beam

- Photon beam generated via coherent
 bremsstrahlung off thin diamond radiator
- Photon energies tagged by scattered electrons
 - Energy measurement precision < 25 MeV
- Photon linear polarization $P_{\gamma} \sim 40\%$ in peak
- Intensity of ~1–5 \times 10⁷ g/s in peak

 Detailed understanding of light-quark meson spectrum requires amplitude analysis.

Collect Data

- Understanding production mechanisms necessary to determine J^{PC} of mesons in amplitude analyses, look at simplest reactions first
- Beam asymmetry Σ yields information on production mechanisms
- Combining data taken with different beam polarization cancels most acceptance effects

JPAC: Mathieu et al., PRD 92, 074013

- Understanding production mechanisms necessary to determine J^{PC} of mesons in amplitude analyses, look at simplest reactions first
- Beam asymmetry Σ yields information on production mechanisms
- Combining data taken with different beam polarization cancels most acceptance effects

- Understanding production mechanisms necessary to determine J^{PC} of mesons in amplitude analyses, look at simplest reactions first
- Beam asymmetry Σ yields information on production mechanisms
- Combining data taken with different beam polarization cancels most acceptance effects

- Understanding production mechanisms necessary to determine J^{PC} of mesons in amplitude analyses, look at simplest reactions first
- Beam asymmetry Σ yields information on production mechanisms
- Combining data taken with different beam polarization cancels most acceptance effects

- First step towards study of photoproduction amplitudes made using 2016 data
- Σ ≈ 1 indicates vector exchange dominates at this energy
- First η measurement at this energy
- Constrains background to baryon resonance production at lower energies [e.g. arXiv:1708.07779]

First JLab 12 GeV publication: Phys.Rev.C 95, 042201 (2017)

- Initial studies of η and η' beam asymmetries using 2017 data and additional decay modes
 - Expect similar mechanism for exotics
- Production is consistent with vector exchange dominance
 - Full GlueX-I data will provide a factor 5 more events
- Program of production amplitude studies is well underway

Beam Asymmetries: $\gamma p \rightarrow \pi^- \Delta^{++}$

- Charged pseudoscalar beam asymmetry has more complicated t-dependance
- Preliminary results use order of magnitude more data than previous measurements

B.G Yu (Korea Aerospace U.), arxiv:1611.09629v5 (16 GeV)

Phys. Rev. D 20, 1553 (1979)

Spin Density Matrix Elements (SDMEs): $\gamma p \rightarrow p + \omega$

- SDMEs measure the transfer of polarization from the photon to the vector meson
- Two matrix elements are particular sensitive to exchange particle in ω polarization transfer
 - Pomeron: +1/2 and -1/2
 - Pion: -1/2 and +1/2
- We observe around +0.35 and -0.35
- Updating with full GlueX-I data
- $\gamma p \rightarrow p + \phi$ and $p + \rho$ also under analysis

HadSpec: Dudek, Edwards, Guo, Thomas, PRD 88, 094505 (2013)

Spectroscopy Prospects: $\gamma p \rightarrow p + \pi^+ \pi^-$

- Take fresh look at π⁺ π⁻ photoproduction
 - Using two-orders of magnitude more data than SLAC
 - Enhancements seen with M > 1 GeV
 - Moment / amplitude analysis underway
- K+ K- photoproduction also being studied

GlueX Detector, October 2014 (w/ Curtis Meyer, Spokesman)

The GlueX Experiment in Hall D @ JLab

- The GlueX experiment is located in Hall D, newly constructed as part of the Jefferson Lab 12 GeV upgrade.
 - Large acceptance solenoidal spectrometer
 - Linearly polarized photon beam peaking at 9 GeV
 - Detects all decay products from full hadronic photoproduction rate
- 100+ Collaborators from 26 institutions

GlueX Detector, August 2014