Experimental results on quark-gluon correlations

Anselm Vossen

Research supported by the

Thanks for helpful discussions and slides to

- Daniel Pitonyak
- Andreas Metz
- Chris Dilks

Outline

- Motivation: transverse spin phenomena in hard scattering
- Recent theoretical progress in unifying twist3 functions and connections to TMD framework
- Recent results in single hadron channels
- Toward better specificity \rightarrow Di-hadron channels
- Recent results and plans at CLAS12 to access twist3 PDFs

D. Pitonyak

1976 →

Interference of QCD amplitudes

- Explanation: Phase shifts due to interference on the QCD amplitude level
- Qiu, Sterman 1991: (Colinear) Twist3: measurement of direct QCD quantum interference

-Single scale process Q^2 , $p_T \gg \Lambda_{QCD}$

Slide from D. Pitonyak

Slide from D. Pitonyak

All kinematical and intrinsic functions can be written in terms of dynamical functions (multi-parton correlators)!

(Kanazawa, Koike, Metz, Pitonyak, Schlegel, PRD 93 (2016))

Interference of QCD amplitudes

From Brodsky, Schmidt, Hwang

- Explanation: Phase shifts due to interference on the QCD amplitude level
- Qiu, Sterman 1991: (Colinear) Twist3: measurement of direct QCD quantum interference
 - Single scale process Q^2 , $p_T \gg \Lambda_{QCD}$
- TMD picture, Sivers (1990), Collins (1992), (e.g. model calculations by Brodsky, Schmidt, Hwang (2002)
 - Two scale process: $Q^2 \gg k_T \approx \Lambda_{QCD}$
- Recent Developments: Strong relation between TMD and Twist3 picture → can be treated in same framework on same footing
- All transverse spin phenomena are driven my multi-parton correlations!

What can we learn from Twist3 PDFs/FFs (non-exhaustive list)

- Fundamentally the result of quark gluon correlations
- Interference between single and two parton amplitude
- OPE: Fundamental to study Proton Wave function
- Connection to TMD framework via EoMR and LIR→On same footing as TMDs!
- Interpretation in terms of forces of the gluon fields on the struck quark → See M. Burkardt's talk
- Twist3 FF E→Connection to hadronic mass generated in fragmentation (Accardi, Signori arXiv:1903.04458)
- Last but not least: Large effects! (see A_N)

. . .

The 'classic' $pp \rightarrow \pi X$

STAR shows no suppression with A (neutral pions, larger x_F region)

PHENIX shows $A^{1/3}$ suppression (charged hadrons, smaller x_F region)

Sensitive to
$$F_{FT}$$
 and $H_{FU}^{I,K}$

Fit shows leading contribution by FF piece

(Kanazawa, Koike, Metz, Pitonyak, PRD 89(RC) (2014))

STAR Data at $\sqrt{s} = 200 \, GeV$ from :Phys. Rev. D86, 051101 (2012)

A_N in ep -> π X

- HERMES A_N
- Sensitive to F_{FT} and $H_{FU}^{I,R}$

Hermes data from PLB 728 183 (2014)

 $F_{UT}^{sin\phi_S}$ in SIDIS: Access to \widetilde{H}

• Compass $sin\phi_S$ modulation

$$F_{UT}^{\sin\phi_{S}} = \frac{2M}{Q} C \left\{ \left(x f_{T}^{q} D_{1q}^{h} - \frac{M_{h}}{M} h_{1}^{q} \frac{\tilde{H}_{q}^{h}}{z} \right) - \frac{p_{T} \cdot k_{T}}{2MM_{h}} \left[\left(x h_{T}^{q} H_{1q}^{\perp h} + \frac{M_{h}}{M} g_{1T}^{q} \frac{\tilde{G}_{q}^{\perp h}}{z} \right) - \left(x h_{T}^{\perp q} H_{1q}^{\perp h} - \frac{M_{h}}{M} f_{1T}^{\perp q} \frac{\tilde{D}_{q}^{\perp h}}{z} \right) \right] \right\}$$

$$F_{UT}^{\sin\phi_S} \propto \sum_a e_a^2 \, \frac{2M_h}{Q} \, h_1^a(x) \frac{\tilde{H}^a(z)}{z}$$

See Mulders, Tangerman Nucl. Phys. B461 (1996) 197-237, Erratum: Nucl. Phys. B484 (1997) 538-540

$$F_{UL}^{sin\phi_h}$$
in SIDIS: Mix of Twist2/Twist3 PDF, FFs

 $\frac{\tilde{H}_{q}^{h}}{}$

 $F_{LL}^{cos\phi_h}$ in SIDIS: Mix of Twist2/Twist3 PDF, FFs

From B Parsamyan at DIS 2018

Planned at STAR: A_N for direct γ

(Gamberg, Kang, Prokudin (2013), Kanazawa, Koike, Metz, Pitonyak (2015))

$$d\Delta\sigma^{\pi} \sim H \otimes f_1 \otimes F_{FT}(x,x)$$

So.. That sounds interesting, what are the experimental challenges?

- Single scale observable \rightarrow Less degrees of freedom in typical inclusive π production measurement
 - $-lp \rightarrow \pi X$
 - $-pp \rightarrow \pi X$
- Solution: Use more final states with more degrees of freedom
 - Di-hadrons (here)
 - Polarized $\Lambda \rightarrow$ See M. Schlegel's talk
- (or processes with only PDFs, or only FFs) $-E.g. A_N(pp \rightarrow \gamma X)$ (not discussed here) -Unclear how to access twist3 FFs in e^+e^-

 OTOH: Inclusive observables can have twist3 contributions, e.g. g₂→See W. Armstrong's talk

Di-hadron fragmentation Functions

Additional Observable:

$$\vec{R} = \vec{P_1} - \vec{P_2} :$$

The relative momentum of the hadron pair is an additional degree of freedom:

the orientation of the two hadrons w.r.t. each other and the jet direction can be an indicator of the quark transverse spin

Parton polarization \rightarrow	Spin averaged	longitudinal	transverse
Hadron Polarization 🗸			
spin averaged	$D_1^{h/q}(z, M) \longrightarrow \mathbb{C}$	8	
longitudinal			
Transverse	Type equation here.	Gı [⊥] (z,M,P _h ,θ)= T-odd, chiral-even →jet handedness QCD vaccum strucuture	Hı*(z,M)= T-odd, chiral-odd Colinear
			P_1

c.m.

- Relative momentum of hadrons can carry away angular momentum
- Partial wave decomposition in θ
- Relative and total angular momentum \rightarrow In principle endless tower of FFs

Dihadron Production in SIDIS

 $\ell(l) + N(P) \rightarrow \ell(l') + h_1(P_1) + h_2(P_2) + X$.Dihadron degrees of freedom:

$$P_h = P_1 + P_2$$

 $R = \frac{1}{2} (P_1 - P_2)$

- Reaction plane is spanned by q and the incoming/outgoing lepton momenta
- Φ_h is the angle between the reaction plane and plane spanned by P_h and q
- $\Phi_{\rm R}$ is the angle between the reaction plane and the plane spanned by R and q
- M_h denotes dihadron invariant mass

Dihadron Spin asymmetries depend on momentum combinations P_h and RModulations in Φ_h and Φ_R are sensitive to different fragmentation and parton distributions

Accessing Twist-3 PDFs via SIDIS Dihadrons in Longitudinal Beam/Target Spin Asymmetries

Beam Spin Asymmetry

Twist-3 PDFs are accessible in the $sin(\Phi_R)$ modulation in longitudinal single spin asymmetries

Pereira, PoS (DIS2014) 231 Bacchetta and Radici, Phys.Rev. D67 (2003) 094002 Bacchetta and Radici, Phys.Rev. D69 (2004) 074026

Twist-3 PDF Interpretations

e(x) and h_L(x) Predictions

Similar

- Light Front Const. Quark. Mod.
 (Lorcé, Pasquini, Schweitzer, JHEP 1501 (2015) 103)
- Bag Model (Jaffe and Ji, Nucl.Phys. B375 (1992) 527-560)
- Spectator Model (Jakob, Mulders, and Rodrigues, Nucl.Phys. A626 (1997) 937-965) $x h_L(x) at Q^2 = 2.5 \text{ GeV}^2$

Dihadron Asymmetries from CLAS and COMPASS

- Longitudinally Polarized solid NH₃ (compared to BSAs with H₂ target)
- 85% beam polarization, 80% target polarization

- Sin Φ_R modulation, sensitive to e(x)
- . (see aforementioned extraction)

CLAS12

Forward Detector:

- TORUS magnet
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- Forward ToF System
- Preshower calorimeter
- E.M. calorimeter (EC)

Central Detector:

- SOLENOID magnet
- Barrel Silicon Tracker
- Central Time-of-Flight

Implemented Upgrades:

- Micromegas (CD)
- Neutron detector (CD)
- RICH detector (FD)
- Forward Tagger (FD)

CLAS12 Kinematic Reach

Beam energy at 10.6 GeV Torus current 3770 A, electrons in-bending, Solenoid magnet at 2416 A.

CLAS12 Data Acquisition Status

Run Group	Target	Period	Observable	Sensitivity
A	Liquid H ₂ (Unpolarized)	Spring 2018 Autumn 2018 Spring 2019	A _{LU}	e(x), G ₁ [⊥]
В	Liquid D ₂ (Unpolarized)	Spring 2019 Autumn 2019	A _{LU}	$e(x), G_1^{\perp}$
С	Solid NH ₃ Solid ND ₃ Longitudinal Polarization	Possibly Autumn 2020 or later	A _{UL} (and A _{LU} , A _{LL})	h _L (x), G ₁ [⊥] (and e(x), also twist-3 DiFFs)

First results on di-hadron correlations

- Use about 10% of spring run (~3% of approved running time)
- Select $ep \to \pi^+\pi^- + X$
- Calculate ϕ_{R}, ϕ_{h} angles of hadron pair $\overrightarrow{P_{h}} = \overrightarrow{P_{\pi}^{+}} + \overrightarrow{P_{\pi}^{-}}, \qquad \overrightarrow{R} = \overrightarrow{P_{\pi}^{+}} - \overrightarrow{P_{\pi}^{-}}$
- 2D fit to asymmetries $\frac{N^+ + N^-}{N^+ + N^-} (\phi_R, \phi_h) \rightarrow A_{LU}^{sin\phi_R}$
- Correct with kinematic factor and $\mathsf{P}_{\mathsf{beam}}{\sim}86\%$

- Q²>1.0 GeV²
- W>2.0 GeV/c²
- z_i>0. l
- z<0.95
- M_{miss}>2.05 GeV/c²
- x_F>0
- y<0.8
- p_{πi}>I GeV/c

Projections for e(x) sensitive dihadron correlations at CLAS12

- 120/30 days of running are approved with unpolarized liquid H2/liquid D2 targets (underway!)
- 120 + 50 days of running are approved with longitudinally polarized NH3/ND3 targets (targets ready ~2020)

Projections using 54 days of unpolarized proton

Summary

- Twist3 functions encapsulate fundamental quark-gluon correlations in the nucleon
- Integration of Twist3 picture and TMD picture exciting!
 Global fits on the horizon
- Di-hadron observables are a great tool to isolate twist3 PDFs
- Exciting program at CLAS12 ahead

BACKUP

Flavor Separation

Flavor separation can be achieved with different targets:

Proton Target:
$$A_{LU,p}^{\sin\phi_R\sin\theta}(z, m_{\pi\pi}, x; Q, y) = -\frac{W(y)}{A(y)} \frac{M}{Q} \frac{|\mathbf{R}|}{m_{\pi\pi}} \frac{\left(4 x e^{u_V}(x) - x e^{d_V}(x)\right)}{\left(4 f_1^{u_V}(x) + f_1^{d_V}(x)\right) D_1^u(z, m_{\pi\pi})}$$

Deuteron Target:
$$A_{LU,d}^{\sin\phi_R\sin\theta}(z, m_{\pi\pi}, x; Q, y) = -\frac{W(y)}{A(y)} \frac{M}{Q} \frac{|\mathbf{R}|}{m_{\pi\pi}} \frac{3\left(xe^{u_V}(x) + xe^{d_V}(x)\right)}{5\left(f_1^{u_V}(x) + f_1^{d_V}(x)\right)} H_{1,sp}^{\triangleleft,u}(z, m_{\pi\pi})$$

e(x) extraction

$$e^{V}(x) = \frac{4}{9}e^{u_{V}}(x) - \frac{1}{9}e^{d_{V}}(x)$$

Extracted from CLAS6 preliminary A_{LU} and A_{UL}

Consistent with LFCQM model prediction (black curve)

Extraction: Courtoy, arXiv:1405.7659 LFCQM Model: Lorcé, Pasquini, Schweitzer, JHEP 1501 (2015) 103 [figure from Pisano, Radici, Eur.Phys.J. A52 (2016) no.6, 155]

e(x) and h_L(x) Predictions

Jakob, Mulders, and Rodrigues, Nucl.Phys. A626 (1997) 937-965

Figures from JLab Proposal E12-06-112B/E12-09-008B

C. Dilks

$$A_{\text{SIDIS}}^{\text{LU}}(x, z, M_h; Q) = -\frac{W(y)}{A(y)} \frac{M}{Q} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[x e^q(x) H_{1sp}^{\triangleleft q}(z, M_h^2) + \frac{M_h}{zM} f_1^q(x) \tilde{G}_{sp}^{\triangleleft q}(z, M_h^2) \right]}{\sum_q e_q^2 f_1^q(x) D_1^q(z, M_h^2)}$$
$$A_{\text{SIDIS}}^{\text{UL}}(x, z, M_h; Q) = -\frac{V(y)}{A(y)} \frac{M}{Q} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[x h_L^q(x) H_{1sp}^{\triangleleft q}(z, M_h^2) + \frac{M_h}{zM} g_1^q(x) \tilde{G}_{sp}^{\triangleleft q}(z, M_h^2) \right]}{\sum_q e_q^2 f_1^q(x) D_1^q(z, M_h^2)}$$

 $\frac{A_{LU}}{A_{UL}}$ should not depend on (z, M_h) if $\tilde{G}^{\triangleleft}$ is negligible

•Extraction of e(x) is more difficult if this is not the case

.Higher-precision data from CLAS12 will help address this

e(x) and h_L(x) Predictions

Lorcé, Pasquini, Schweitzer, JHEP 1501 (2015) 103

Solid: LFCQM model Dot-Dashed: spectator model Dashed: bag model

.Relatively larger magnitude partly

Twist-3 Dihadron Fragmentation Function

Spectator Model Calculation:

Leading order term of $ilde{G}^{\sphericalangle}$ is <0.5% of that of the leading-twist DiFF D_1

Partial Wave Expansions

 $\widetilde{G}^{\triangleleft}(z,\cos\theta, M_h^2) = \widetilde{G}_{ot}^{\triangleleft}(z, M_h^2) + \widetilde{G}_{lt}^{\triangleleft}(z, M_h^2) \cos\theta$ $D_1^a(z,\cos\theta, M_h^2) = D_{1,oo}^a(z, M_h^2) + D_{1,ol}^a(z, M_h^2) \cos\theta + D_{1,ll}^a(z, M_h^2)(3\cos^2\theta - 1)$

W. Yang , X. Wang, Y. Yang, Z. Lu Phys.Rev. D99 (2019) no.5, 054003

Dihadron Asymmetries from CLAS6

Pereira, PoS(DIS2014)231

Access of e(x) in SIDIS x-section

- One of only three colinear twist-3 parton distribution functions in the nucleon
- Interference of quark-gluon with quark amplitude
- ∫ x²e(x)dx →⊥ force on ⊥ polarized quarks in an unpolarized nucleon, "Boer-Mulders force" (Burkardt)
- Sizable model predictions

Jaffe, Ji, Nucl. Phys. **B**375, 527-560 (1992).

BSA $ep \rightarrow \pi^+\pi^- + X$: Clean access to e(x)

• See e.g. Aurore Courtoy, arXiv:1405.7659

$$\begin{split} F_{LU}^{\sin\phi_R} &= -x \frac{|\mathbf{R}|\sin\theta}{Q} \left[\frac{M}{m_{hh}} x \, e^q(x) \, H_1^{\triangleleft \, q} \big(z, \cos\theta, m_{hh} \big) + \right. \\ &\left. + \frac{1}{z} \, f_1^q(x) \, \widetilde{G}^{\triangleleft \, q} \big(z, \cos\theta, m_{hh} \big) \right], \end{split}$$

0.02

Solid: points hydrogen E.P.J.Web of Conf. 73(2014) 02008 Open points: NH₃ PoS DIS2014 (2014) 231

CLAS12

Forward Detector:

- TORUS magnet
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- Forward ToF System
- Preshower calorimeter
- E.M. calorimeter (EC)

Central Detector:

- SOLENOID magnet
- Barrel Silicon Tracker
- Central Time-of-Flight

Implemented Upgrades:

- Micromegas (CD)
- Neutron detector (CD)
- RICH detector (FD)
- Forward Tagger (FD)

Spring 2018: CLAS12 installation complete for first run with H2 target

CLAS12 Kinematic Reach

Beam energy at 10.6 GeV Torus current 3770 A, electrons in-bending, Solenoid magnet at 2416 A.

Performance plots

First results on di-hadron correlations

- Use about 10% of spring run (~3% of approved running time)
- Select $ep \to \pi^+\pi^- + X$
- Calculate ϕ_{R}, ϕ_{h} angles of hadron pair $\overrightarrow{P_{h}} = \overrightarrow{P_{\pi}^{+}} + \overrightarrow{P_{\pi}^{-}}, \qquad \overrightarrow{R} = \overrightarrow{P_{\pi}^{+}} - \overrightarrow{P_{\pi}^{-}}$
- 2D fit to asymmetries $\frac{N^+ + N^-}{N^+ + N^-} (\phi_R, \phi_h) \rightarrow A_{LU}^{sin\phi_R}$
- Correct with kinematic factor and P_{beam} ~86%

- Q²>1.0 GeV²
- W>2.0 GeV/c²
- z_i>0. l
- z<0.95
- M_{miss}>2.05 GeV/c²
- x_F>0
- y<0.8
- p_{*πi*}>I GeV/c

Using only pairs with $M_{\pi\pi}$ > 0.9 GeV/c²

• Enhanced asymmetries

Office of

Science

• Rise with *x*

U.S. DEPARTMENT OF

Summary

- First Beam Spin Asymmetries of Di-hadrons shown
- Indications of signal consistent with previous measurement
- 120/30 days of running are approved with unpolarized liquid H2/liquid D2 targets (underway!)
- 120 + 50 days of running are approved with longitudinally polarized NH3/ND3 targets (targets ready ~2020)

$$\sum_{h, S_h} \int dz M_h$$

Andrea Signori at FF2019

Jet / quark mass as the average of the masses of the produced hadrons weighted by the chiral-odd E FF WW approximation $M_j = m_q$ **Dynamical mass! Full QCD** $M_j = m_q + \frac{m_q^{corr}}{m_q}$

Twist-3 Parton Distribution Functions

 $sin(\Phi_R)$ modulation of A_{LU} and A_{UL} in dihadrons is sensitive to Twist-3 PDFs: e(x) are

Figure from arXiv:1702.07317

A_N in $pp \rightarrow \pi X - PUZZLE FOR 40+ YEARS!$

• Fds
$$xe(x) = \frac{m_q}{M} f_1(x) - 2\mathcal{P} \int_{-1}^1 \frac{dx' H_{FU}(x,x')}{x-x'}$$

• $\frac{x}{2} h_L = \frac{m}{M} g_1(x) - h_{1L}^{\perp(1)}(x) - 2\mathcal{P} \int_{-1}^1 \frac{dx' H_{FL}(x,x')}{x-x'}$

$$\begin{split} h_L^q(x) &= 2x \int_x^{\epsilon(x)} dx_1 \frac{h_1^q(x_1)}{x_1^2} \\ &+ \frac{m_q}{M} \left(\frac{g_1^q(x)}{x} - 2x \int_x^{\epsilon(x)} dx_1 \frac{g_1^q(x_1)}{x_1^3} \right) \\ &+ 4x \int_x^{\epsilon(x)} \frac{dx_1}{x_1^3} \times \\ \mathcal{P} \int_{-1}^1 dx_2 \frac{(x_1/2)(x_2 - x_1)\delta(x_1 - x) + }{(x_1 - x_2)^2} \end{split} \qquad h_{1L}^{\perp(1),q}(x) &= x^2 \int_x^{\epsilon(x)} dx_1 \frac{h_1^q(x_1)}{x_1^2} \\ &- \frac{m_q}{M} x^2 \int_x^{\epsilon(x)} dx_1 \frac{g_1^q(x_1)}{x_1^3} \\ &+ 2x^2 \int_x^{\epsilon(x)} \frac{dx_1}{x_1^3} \mathcal{P} \int_{-1}^1 dx_2 \frac{2x_1 - x_2}{(x_1 - x_2)^2} H_{FL}^q(x_1, x_2) \, . \end{split}$$

4/10/19

•

From: Phys.Rev. D93 (2016) no.5, 054024

Spring 2018: CLAS12 installation complete for first run with H2 target

Enter polarization in the final States

Observables:

z: fractional energy of the quark carried by the hadron $p_{h,T}$: transverse momentum of the hadron wrt the quark direction: **TMD FFs**

Parton polarization \rightarrow	Spin averaged	longitudinal	transverse	
Hadron Polarization 🗸				
spin averaged	$D_1^{h/q}(z, p_T) = \left(\bullet \rightarrow \bigcirc \right)$		$H_1^{\perp h/q}(z, p_T) = \left(\begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \end{smallmatrix} \right) - \left(\begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \end{smallmatrix} \right)$	
longitudinal				
Transverse (here Λ)	$D_{1T}^{\perp\Lambda/q}(z,p_T) = \left(\bullet \rightarrow \bullet \right)$			

- Analogue → similar to PDFs encoding spin/orbit correlations
- Determining final state polarization needs self analyzing decay (Λ)
- Gluon FFs similar but with circular/linear polarization (not as relevant for e+e-)

• Similar: A_N in SIDIS ...

- Since 40+ years
- P, T- invariance → TSSAs should vanish!

Enter polarization in the final States

Observables:

z: fractional energy of the quark carried by the hadron $p_{h,T}$: transverse momentum of the hadron wrt the quark direction: **TMD FFs**

				\sim		
Parton polarization \rightarrow	Spin averaged		longitudin	0	ansverse	:
Hadron Polarization 🕹				60		
spin averaged	$D_1^{h/q}(z,p_T) =$	$\left(\bullet \rightarrow \bigcirc\right)$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	55	$H_1^{\perp h/q}(z, p_T)$	$= \left(\ddagger \rightarrow \bigcirc \right) - \left(\ddagger \rightarrow \bigcirc \right)$
longitudinal		C	CI.,			
Transverse (here Λ)	$D_{1T}^{\perp\Lambda/q}(z,p_T)$					
		41.				
 Analogue → sir, 		ıg spin/orbit co،	orrelations			
Determining final	J.ation	needs self and	alyzing decay ((Λ)		
Gluon FFs similar I	bı circular/	linear polarizat	ion (not as rele	evant for e+e-)		

Flavor Separation

 \rightarrow

Flavor separation can be achieved with different targets:

Proton Target:
$$A_{LU,p}^{\sin\phi_R\sin\theta}(z, m_{\pi\pi}, x; Q, y) = -\frac{W(y)}{A(y)} \frac{M}{Q} \frac{|\mathbf{R}|}{m_{\pi\pi}} \frac{\left(4 x e^{u_V}(x) - x e^{d_V}(x)\right)}{\left(4 f_1^{u_V}(x) + f_1^{d_V}(x)\right) D_1^u(z, m_{\pi\pi})}$$

Deuteron Target:
$$A_{LU,d}^{\sin\phi_R\sin\theta}(z, m_{\pi\pi}, x; Q, y) = -\frac{W(y)}{A(y)} \frac{M}{Q} \frac{|\mathbf{R}|}{m_{\pi\pi}} \frac{3\left(xe^{u_V}(x) + xe^{d_V}(x)\right)}{5\left(f_1^{u_V}(x) + f_1^{d_V}(x)\right)} H_{1,sp}^{\triangleleft,u}(z, m_{\pi\pi})$$

Extras

