8th Workshop of the APS Topical Group on Hadronic Physics GTTTP 2019 APRIL 10-12, 2019 • DENVER, CO

GPD at COMPASS at CERN 1- DVCS 2- HEMP

Nicole d'Hose – CEA – Université Paris-Saclay

Deeply virtual Compton scattering (DVCS)

D. Mueller et al, Fortsch. Phys. 42 (1994)
 X.D. Ji, PRL 78 (1997), PRD 55 (1997)
 A. V. Radyushkin, PLB 385 (1996), PRD 56 (1997)

DVCS: $\ell p \rightarrow \ell' p' \gamma$ the golden channel because it interferes with the Bethe-Heitler process

also meson production $\ell p \rightarrow \ell' p' \pi, \rho, \omega \text{ or } \phi \text{ or } J/\psi...$

The GPDs depend on the following variables:

- x: average long. momentum
- ξ : long. mom. difference
- t: four-momentum transfer related to b_{\perp} via Fourier transform

The variables measured in the experiment: $E_{\ell}, Q^2, x_B \sim 2\xi / (1+\xi),$ $t (or \theta_{\gamma*\gamma}) and \phi (\ell\ell' plane/\gamma\gamma* plane)$

Deeply virtual Compton scattering (DVCS)

The amplitude DVCS at LT & LO in α_s (GPD **H**): $\begin{aligned}
\mathbf{H} &= \int_{t, \xi \text{ fixed}}^{+1} dx \quad \frac{\mathbf{H}(x, \xi, t)}{x - \xi + i\varepsilon} = \mathcal{P} \int_{-1}^{+1} dx \quad \frac{\mathbf{H}(x, \xi, t)}{x - \xi} - i \pi \mathbf{H}(x \pm \xi, x, t)
\end{aligned}$ In an experiment we measure

Compton Form Factor ${\cal H}$

$$\mathcal{Re}\mathcal{H}(\xi,t) = \int dx \, \frac{Im\mathcal{H}(x,t)}{x-\xi} + D(t)$$

COMPASS: Versatile facility with hadron (π[±], K[±], p ...) & lepton (polarized μ[±]) beams of high energy. ~200 GeV

6 9

LHC

ΧĴΧ

The DVCS experiment at COMPASS

Two stage magnetic spectrometer for large angular & momentum acceptance Particle identification with:

- Ring Imaging Cerenkov Counter
- Electromagnetic calorimeters (ECAL1 and ECAL2)
- Hadronic calorimeters
- Hadron absorbers

The DVCS experiment at COMPASS

DVCS : $\mu p \rightarrow \mu' p \gamma$ New equipements: ▶2.5m LH2 target >4m ToF Barrel CAMERA 24 inner & outer scintillators separated by ~1m 1 GHz SADC readout, 330ps ToF resolution **ECALO ECALO : 2 × 2 m2** Shashlyk modules + MAPD readout one module is made of 9 cells (4×4 cm²) = 194 modules or 1746 cells AMERA

6

2012: 1 month pilot run

2016 -17: 2 x 6 months data taking

COMPASS 2012 Selection of exclusive evts with recoil detection

COMPASS 2012

π^0 background estimation

 π^0 are one of the main background sources for excl. photon events.

Two possible case:

• Visible (both γ detected \rightarrow subtracted)

the DVCS photon after all exclusivity cuts is combined with all detected photons below the DVCS threshold: 4,5,10 GeV in ECAL0, 1, 2

- Invisible (one γ lost \rightarrow estimated by MC)
 - Semi-inclusive LEPTO 6.1
 - Exclusive HEPGEN π⁰
 (Goloskokov-Kroll model)

Comparing the two components to the data allows the determination of their relative normalisation. The sum of the 2 components is normalized to the visible π^0 contamination in the M_{yy} peak

Visible leaking π^0 in the data

DVCS cross section at Eµ=160 GeV

COMPASS 2012

 $d\sigma \alpha ||T^{BH}||^2 + \text{Interference Term} + ||T^{DVCS}||^2$

COMPASS 2012

DVCS cross section at E μ =160 GeV

COMPASS 2012 DVCS cross section at Eµ=160 GeV

when BH is not dominant

At COMPASS using polarized positive and negative muon beams:

$$S_{CS,U} \equiv d\sigma^{+} + d\sigma^{-} = 2[d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + Im I]$$

$$= 2[d\sigma^{BH} + (c_{0}^{DVCS}) + c_{1}^{DVCS} \cos \phi + c_{2}^{DVCS} \cos 2\phi + s_{1}^{I} \sin \phi + s_{2}^{I} \sin 2\phi]$$
All the other terms are cancelled in the integration over ϕ
can be subtracted
$$COMPASS acceptance for DVCS$$

$$\frac{d^{3}\sigma_{T}^{\mu p}}{dt^{2}d\nu dt} = \int_{-\pi}^{\pi} d\phi (d\sigma - d\sigma^{BH}) \propto c_{0}^{DVCS}$$

$$\frac{d\sigma^{\gamma^{*}p}}{dt} = \frac{1}{\Gamma(Q^{2}, \nu, E_{\mu})} \frac{d^{3}\sigma_{T}^{\mu p}}{dQ^{2}d\nu dt}$$
Flux for transverse virtual photons
$$\frac{d\sigma^{\gamma^{*}p}}{dt} = \frac{1}{\rho(Q^{2}, \nu, E_{\mu})} \frac{d^{3}\sigma_{T}^{\mu p}}{dQ^{2}d\nu dt}$$

$$\frac{d\sigma^{\gamma^{*}p}}{dt} = \frac{1}{\rho(Q^{2}, \nu, E_{\mu})} \frac{d\sigma^{\gamma^{*}p}}{dQ^{2}d\nu dt}$$

$$\frac{d\sigma^{\gamma^{*}p}}{dt} = \frac{1}{\rho(Q^{2}, \nu, E_{\mu})} \frac{d\sigma^{\gamma^{*}p}}{dt}$$

$$\frac{d\sigma^{\gamma^{*}p}}{dt}$$

$$d\sigma^{DVCS}/dt = e^{-B'|t|} = c_0^{DVCS}$$

10⁻¹ 2

 $x_{\rm Bi}$

$$d\sigma^{DVCS}/dt = e^{-B'|t|} = c_0^{DVCS}$$
At COMPASS:
 $\langle x_{ej} \rangle = 0.056; \langle Q^2 \rangle = 1.8 \text{ GeV}^2;$
 $t \text{ varies from 0.08 to 0.64 GeV}^2$
At small x_{ej} and small $t:$
 $C_0^{DVCS'} \propto 4(\mathcal{H}\mathcal{H}^* + \tilde{\mathcal{H}}\tilde{\mathcal{H}}^*) + \frac{t}{\mathcal{M}^2}\mathcal{E}\mathcal{E}^*$
Dominance of $Im\mathcal{H}$
(with respect of $Re\mathcal{H}$ and other (CFF)
 I_{03}
 $\int_{10^2}^{0^{OVCS'}} \int_{0^{OVCS'}} \int_{$

COMPASS 2016-17

First insight

Exclusivity variables

Comparison between the observables given by the spectro or by CAMERA

DVCS : $\mu p \rightarrow \mu' p \gamma$

- $1) \Delta p_{\rm T} = p_{\rm T}^{\rm cam} p_{\rm T}^{\rm spec}$
- 2) $\Delta \varphi = \varphi^{\text{cam}} \varphi^{\text{spec}}$
- 3) $\Delta z_A = z_A^{\text{cam}} z_A^{Z_B \text{ and vertex}}$

4)
$$M^{2}_{X=0} = (p_{\mu_{in}} + p_{p_{in}} - p_{\mu_{out}} - p_{p_{out}} - p_{\gamma})^{2}$$

$$d\sigma \stackrel{+}{\leftarrow} + d\sigma \stackrel{-}{\rightarrow} \qquad t\text{-slope}$$
$$d\sigma \stackrel{+}{\leftarrow} - d\sigma \stackrel{-}{\rightarrow} \qquad d\text{-term}$$

μ⁺

• µ

 M_{v}^{2} ((GeV/c²)²)

COMPASS 2016-17

First insight

Distributions in ϕ

This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. This work is also part of the "Mapping Proton Quark Structure using Petabytes of COMPASS Data" PRAC allocation supported by the National Science Foundation (award number OCI 1713684).

Beam Charge and Spin Diff. @ COMPASS

GPDs and Hard Exclusive Meson Production

Quark contribution

Gluon contribution at the same order in α_s

The meson wave function Is an additional non-perturbative term

4 chiral-even GPDs: helicity of parton unchanged

$$H^q(x, \xi, t)$$
 $E^q(x, \xi, t)$ For Vector Meson $\widetilde{H}^q(x, \xi, t)$ $\widetilde{E}^q(x, \xi, t)$ For Pseudo-Scalar Meson

+ 4 chiral-odd or transversity GPDs: helicity of parton changed (not possible in DVCS)

$$\begin{array}{ll} \mathbf{H}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) & \mathbf{E}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) \\ \widetilde{\mathbf{H}}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) & \widetilde{\mathbf{E}}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) \end{array}$$

$$\overline{\mathbf{E}_{\mathbf{T}}^{q}} = \mathbf{2} \ \widetilde{\mathbf{H}}_{\mathbf{T}}^{q} + \mathbf{E}_{\mathbf{T}}^{q}$$

Factorisation proven only for σ_{L}

 σ_{T} is asymptotically suppressed by $1/Q^2$ but large contribution observed model of σ_{T} with transversity GPDs - divergencies regularized by k_{T} of qand \overline{q} and Sudakov suppression factor

Exclusive π^0 production on unpolarized proton

$$e p \rightarrow e \pi^{0} p \frac{d^{2}\sigma}{dt d\phi_{\pi}} = \frac{1}{2\pi} \left[\left(\frac{d\sigma_{T}}{dt} + \epsilon \frac{d\sigma_{L}}{dt} \right) + \epsilon \cos 2\phi_{\pi} \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{\pi} \frac{d\sigma_{LT}}{dt} \right]$$

$$\frac{d\sigma_L}{dt} = \frac{4\pi\alpha}{k'} \frac{1}{Q^6} \left\{ \left(1 - \xi^2\right) \left| \langle \tilde{H} \rangle \right|^2 - 2\xi^2 \operatorname{Re} \left[\langle \tilde{H} \rangle^* \langle \tilde{E} \rangle \right] - \frac{t'}{4m^2} \xi^2 \left| \langle \tilde{E} \rangle \right|^2 \right\} \text{ Leading twist should be dominant} \\ \text{but } \approx \text{ only a few \% of } \frac{d\sigma_T}{dt}$$

The other contributions arise from coupling between chiral-odd (quark helicity flip) GPDs to the twist-3 pion amplitude

$$\frac{d\sigma_T}{dt} = \frac{4\pi\alpha}{2k'} \frac{\mu_\pi^2}{Q^8} \left[\left(1 - \xi^2 \left(|\langle H_T \rangle|\right)^2 - \frac{t'}{8m^2} \left(|\langle \bar{E}_T \rangle|\right)^2 \right] \right]$$
$$\frac{\sigma_{LT}}{dt} = \frac{4\pi\alpha}{\sqrt{2}k'} \frac{\mu_\pi}{Q^7} \xi \sqrt{1 - \xi^2} \frac{\sqrt{-t'}}{2m} \operatorname{Re}\left[\langle H_T \rangle \langle \tilde{E} \rangle \right]$$
$$\frac{\sigma_{TT}}{dt} = \frac{4\pi\alpha}{k'} \frac{\mu_\pi^2}{Q^8} \frac{t'}{16m^2} \left[\langle \bar{E}_T \rangle \right]^2$$

COMPASS 2012

A large impact of \overline{E}_T should be clearly visible in σ_{TT} and in the dip at small |t| of σ_T

Exclusive π^0 production on unpolarized proton

$$e p \rightarrow e \pi^{0} p \frac{d^{2}\sigma}{dt d\phi_{\pi}} = \frac{1}{2\pi} \left[\left(\epsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{T}}{dt} \right) + \epsilon \cos 2\phi_{\pi} \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{\pi} \frac{d\sigma_{LT}}{dt} \right]$$

COMPASS 2012

A dip at small t would indicate a large impact of E_{T}

Exclusive (a) production on unpolarized proton

COMPASS 2012

Conclusions

From 2016-17 data

sum and difference of DVCS x-sections with polarized μ + and μ -

- \rightarrow transverse extension of partons as a function of x_{Bi}
- \rightarrow Im $\mathcal{H}(\xi,t)$ and Re $\mathcal{H}(\xi,t)$ for D-term and pressure distribution

HEMP π^0 , ρ , ω , ϕ , J/ ψ → universality of GPDs - transverse GPDs - flavor decomposition

COMPASS++/AMBER starting in 2022

Letter of Intent Draft 1.0: <u>https://arXiv.org/abs/1808.00848</u>

New collaborators are welcome: <u>https://nqf-m2.web.cern.ch</u>

A new QCD facility at the M2 beam line of the CERN SPS

Letter of Intent - Draft 1.0: https://arXiv.org/abs/1808.00848

COMPASS++/AMBER starting in 2022

	Physics	Beam	Beam	Trigger	Beam	-	Earliest	Hardware
Program	Goals	Energy	Intensity	Rate	Туре	Target	start time,	Additions
	D	[Gev]	[8]	[KHZ]			duration	d mpg
μp	Precision	100	1 106	100	-	high-		active TPC,
elastic	proton-radius	100	$4 \cdot 10^{\circ}$	100	μ^{\pm}	pressure	2022	SciFi trigger,
scattering	measurement					H2	1 year	silicon veto,
Hard			7			· · · · 1		recoil silicon,
exclusive	GPD E	160	$2 \cdot 10'$	10	μ^{\pm}	NH ₃	2022	modified
reactions							2 years	PT magnet
Input for			5					
Dark Matter	\overline{p} production	20-280	$5 \cdot 10^{5}$	25	р	LH2,	2022	LHe
Search	cross section					LHe	1 month	target
		10.00	5 107	25			2022	target spectr.:
p-induced	Heavy quark	12, 20	$5 \cdot 10'$	25	\overline{p}	LH2	2022	tracking,
Spectroscopy	exotics						2 years	calorimetry
Drall Van	Dian DDEs	100	7 107	25	_ ±	CAV	2022	
Dren- ran	PION PDF8	190	7.10	23	n^{-}	C/W	1.2 vaara	
							1-2 years	
			0			*		"active
Drell-Yan	Kaon PDFs &	~ 100	10^{8}	25-50	K^{\pm}, \overline{p}	NH_3^{\downarrow} ,	2026	absorber",
(RF)	Nucleon TMDs					C/W	2-3 years	vertex det.
	Kaon polarisa-						non-exclusive	
Primakoff	bility & pion	~ 100	5 · 10°	> 10	<i>K</i> ⁻	Ni	2026	
(RF)	life time						1 year	
Prompt							non-exclusive	
Photons	Meson gluon	≥ 100	5 · 10°	10-100	K^{\pm}	LH2,	2026	hodoscope
(RF)	PDFs				π^{\pm}	Ni	1-2 years	
K-induced	High-precision							recoil TOF,
Spectroscopy	strange-meson	50-100	5 · 10°	25	<i>K</i> ⁻	LH2	2026	forward
(RF)	spectrum						1 year	PID
	Spin Density	TO 10-	a 106					
Vector mesons	Matrix	50-100	5 · 10°	10-100	K^{\pm}, π^{\pm}	from H	2026	
(RF)	Elements					to Pb	1 year	

Beam line unique with polarised $\mu\text{+}$ and $\mu\text{-}$ and high intensity pion beam

Possible RF separated beam for high intensity antiproton and K beams

Versatile apparatus (Upgrade ++)

Proton Radius Meson PDF – gluon PDF Proton spin structure 3D imaging (TMDs and GPDs) Hadron spectroscopy Anti-matter cross section

The DVCS experiment at COMPASS

DVCS : $\mu p \rightarrow \mu' p \gamma$

New equipements: >2.5m LH2 target >4m ToF Barrel CAMERA >ECALO

CAMERA L=4m Ø=2m

24 inner & outer scintillators separated by about 1m 1 GHz SADC readout, 330ps ToF resolution

ECAL0: 2 × 2 m2

Shashlyk modules + MAPD readout one module is made of 9 cells (4×4 cm²) = 194 modules or 1746 cells

$$d\sigma^{DVCS}/dt = e^{-B'|t|} = c_0^{DVCS}$$

$$\begin{split} c_{0,\mathrm{unp}}^{\mathrm{DVCS}} &= 2(2-2y+y^2)\mathcal{C}_{\mathrm{unp}}^{\mathrm{DVCS}}\left(\mathcal{F},\mathcal{F}^*\right) \\ \mathcal{C}_{\mathrm{unp}}^{\mathrm{DVCS}}\left(\mathcal{F},\mathcal{F}^*\right) &= \frac{1}{(2-x_{\mathrm{B}})^2} \bigg\{ 4(1-x_{\mathrm{B}}) \left(\mathcal{H}\mathcal{H}^* + \widetilde{\mathcal{H}}\widetilde{\mathcal{H}}^*\right) - x_{\mathrm{B}}^2 \Big(\mathcal{H}\mathcal{E}^* + \mathcal{E}\mathcal{H}^* + \widetilde{\mathcal{H}}\widetilde{\mathcal{E}}^* + \widetilde{\mathcal{E}}\widetilde{\mathcal{H}}^*\Big) \\ &- \left(x_{\mathrm{B}}^2 + (2-x_{\mathrm{B}})^2 \frac{\Delta^2}{4M^2}\right) \mathcal{E}\mathcal{E}^* - x_{\mathrm{B}}^2 \frac{\Delta^2}{4M^2} \widetilde{\mathcal{E}}\widetilde{\mathcal{E}}^* \bigg\}, \end{split}$$

At COMPASS:

< x_{Bj} >=0.056; < Q^2 >=1.8 GeV²; *t* varies from 0.08 to 0.64 GeV² Due to the small value of x_{Bj} and *t* it remains only:

$$\mathbf{C_0}^{DVCS} \propto 4(\mathcal{H}\mathcal{H}^* + \tilde{\mathcal{H}}\tilde{\mathcal{H}}^*) + \frac{t}{M^2}\mathcal{E}\mathcal{E}^*$$

Dominance of $Im\mathcal{H}$ (with respect of $Re\mathcal{H}$ and other CFF) at small x_B

The past and future DVCS experiments

