





# ERL cooler beam tests at the FAST facility

Fermilab: J. Ruan, P. Piot Northern Illinois University: A. Fetterman\*, C. Marshall\*, P. Piot

Collaborators at JLab: S. Benson, J. Gubeli, F. Hannon, K. Jordan, S. Wang

\* Graduate students

#### Introduction

- High-charge magnetized beam:
  - Production of high-charge (3.2 nC) magnetized beam
  - characterization of magnetization
  - Transport + manipulation over long beamline including use of locally non-symmetric optics
- High-current magnetized beams → understanding halo
  - Explore halo formation in magnetized beam using a long-dynamical range diagnostics (LDRD)
- New merger concept:
  - Tests of merger concept combining RF deflector and magnetic coil proposed by A. Hutton -- augmenting recent test at Cornell.

辈 Fermilab

#### The FAST facility infrastructure





P. Piot | 2018 EIC collaboration meeting, JLab

#### Relevance of FAST injector to EIC e- cooling



ore data points from Winter-2017 run

10/29/2018

**‡** Fermilab

#### Magnetized beams in the FAST injector

- The FAST injector includes
  - 1+1/2 RF gun
  - High quantum efficiency Cs<sub>2</sub>Te photocathode
  - A symmetrical solenoid configuration can provides substantial field on cathode up to 0.15 T
- Magnetized beam is characterized by the magnetization parameter Laser-spot

$$\mathcal{L} = \frac{eB_c}{2mc}\sigma_c^2 \simeq 294 \frac{B_c[T]\sigma_c^2[m]}{B_c[T]\sigma_c^2[m]}$$

• Drift emittance is



 $arepsilon_d = arepsilon_+ \simeq 2 \mathcal{L}$  (for JLEIC  $arepsilon_d \simeq 36~\mu{
m m}$  )

**B** field on

cathode

**娄** Fermilab



## $\mathcal{L}_n \equiv \gamma \mathcal{L} = \gamma \frac{\sigma_1 \sigma_2 \sin \theta}{-}$

P. Piot | 2018 EIC collaboration meeting, JLab



### Magnetized beams generation at FAST

- During the winter 2017 run we did some *low-charge* (pC) magnetized beam
- Inferred the magnetization via measurement of the kinetic angular momentum



Bucked

(mm)

configuration

**‡** Fermilab

Bucking B=250

A

magnetized

hoom

$$\varepsilon_{n,\pm} = \sqrt{(\varepsilon_{n,u})^2 + (\gamma \mathcal{L})^2 \pm \gamma \mathcal{L}}$$

$$\begin{cases} \varepsilon_{n,+} = 2\gamma \mathcal{L} \text{ (drift emittance)} \\ \varepsilon_{n,-} = \frac{(\varepsilon_{n,u})^2}{2\gamma \mathcal{L}} \end{cases}$$

decoupled an incoming magnetized beam

• A set of three quadrupole magnets can



(1998)

-98-04

Y. Derbenev, University of Michigan report UM-HE

2001

053501

4

PRSTAB

Brinkmann et al

10/29/2018

#### Decoupling into flat beams @ FAST (preliminary)

- Low charge experiment (pC) performed in Winter 2017
- Demonstrated flat-beam emittance repartition

|                      | Experimental results |                 |                  |  |
|----------------------|----------------------|-----------------|------------------|--|
| Norm. emit.          | Vert. fb             | Hor. fb         | Units            |  |
| $\epsilon_{x}$       | $0.13 \pm 0.03$      | $12.7 \pm 2.79$ | $\mu \mathrm{m}$ |  |
| $\epsilon_y$         | $14.4 \pm 3.17$      | $0.17\pm0.04$   | $\mu \mathrm{m}$ |  |
| $\epsilon_{4D}$      | $1.37\pm0.42$        | $1.47 \pm 0.49$ | $\mu \mathrm{m}$ |  |
| IMPACT-T simulations |                      |                 |                  |  |
| $\epsilon_{x}$       | 0.08                 | 17.7            | $\mu$ m          |  |
| $\epsilon_y$         | 18.0                 | 0.10            | $\mu \mathrm{m}$ |  |
| $\epsilon_{4D}$      | 1.20                 | 1.33            | $\mu$ m          |  |





**‡** Fermilab

E





 Magnetization at cathode is  $\gamma \mathcal{L} \simeq 18.02 \ \mu \mathrm{m}$ 

Started with thermal

Cs<sub>2</sub>Te photocathode

emittance associated to

 Next step is to understand mapping to real conventiona emittance using RFBT



#### Formation of high-charge magnetized beams II



🗲 Fermilab

H

#### Going to higher charge



- Experiment on high-charge magnetized beam generation in preparation
- Some challenges being addressed:
  - Laser-distribution control (transverse + longitudinal if needed)
- So far up to 2.8 nC was produced (limited by the laser setting)





#### Halo formation in magnetized beams

- Halo could cause beam loss which would ultimately limit the average current of the ERL cooler
- Various source of halo (some could be mimicked with laser shaping)
- Large-dynamical-range diagnostics developed at Jlab (P. Evtushenko and J. Gubeli):
  - Wire scanner with high-dynamical range electronic or PMT (measured projections only)
  - YaG:Ce screen with dual-sensor detection system.



**‡** Fermilab

## done in 45-deg frame (w. normal quad) RF gun section superconducting linac





Measurement of halo at  $\sim 10^{-6}$  fraction



#

0

13

#2

0 0

 $\mathbf{C}$ 

12

CCD #2 saturation level - Start of overlap

End of overlap region

P. Evtushenko

1000

100

LDRD

Amplitude, a.u.

**娄**Fermilab

#### 10/29/2018

14

#### Test of a new merger concept (during year 2)

- Straight merger concept (see talk by K. Deitrick):
  - RF deflecting cavity with superimposed magnetostatic fields.
  - Separation of injector and recirculated beam with angular separation sufficient for septum magnet.
- Preliminary tests done at Cornell
- Follow up tests at FAST:
  - beam degradation due to RF field
  - Impact on magnetization
  - Depending on location; RF cavity will also be used as a longitudinal phase space diagnostics





#### Summary

#### 1. High-charge magnetized beam:

- a. Simulation of 3.2 nC magnetized beam with parameters consistent with JLEIC mostly done; need to understand limiting effects associated with mapping into conventional emittances (flat-beam transform).
- b. Simulations of transport of magnetized beams started.
- c. Beam experiment on magnetized beam formation & characterization in preparation.

#### 2. High-current magnetized beams

- a. Possible locations for the LDRD identified, final locations to be selected based on simulations (1.b).
- 3. New merger concept
  - a. planned in year 2, identified a 1.3-GHz power supply, location of experiment not yet decided.

🗲 Fermilab