Status of eRHIC IR Design 3/15/2017 R. B. Palmer

- Lattice Requirements
- Synchrotron Radiation
- Electron betas
- Hadron Magnets
- Hadron betas
- Detector Requirements
- Hadron Detectors
- Electron Detectors
- Conclusions

Lattice Requirements

- Achieve required betas at IP: down to 4 cm in y, and down to 50 cm in x
- Provide locations for crabs with β_x =1200 m for p, and 250 m for e
- Minimize all other betas to control chromaticity
- Minimize fields in all magnets to allow NbTi at 4 K
- Adequately shield between e and p beams
- Minimize fan of synchrotron Radiation SR in IP and beyond (REAR)

Layout from pCDR (full4)

Synchrotron Radiation from incoming electrons 'FORWARD'

- Radiation from electrons up stream must be collimated
- Electron bends upstream near the IP are avoided
- Electron focusing is designed to minimize angular spread (fan) of synchrotron radiation from quads near the IP
- To avoid SR scattering into the central detector, the beam pipes and downstream (REAR) quads have apertures greater than any fan from up to 13.5 sigma upstream electrons collimated elsewhere in ring.
- These fans are smaller if the upstream (FORWARD) quad doublets are weak and far apart
- But this gives higher betas and more chromaticity

Incoming (FORWARD) e focusing anne39ac

(worst case)

15 sigma beam size for worst case (Div.=220 μ rad), defining the magnet apertures.

Synchrotron fans

SRfanx SRfany

Synchrotron fan set by electrons at 13.5 sigma beam in worst case, as collimated elsewhere in the ring

Minimum apertures to avoid SR fan

For elliptical beam pipe in central detector

z (m)	x (cm)	y (cm)
-4.5	6.0	3.3
0	2.6	2.5
4.5	1.9	1.6

for Q1eR, Q2eR, & B2eR

 $\begin{array}{c|c} & \mbox{dependence on } z \\ \mbox{width } x & \mbox{x=}7.5 \ 10^{-3} \ (-z \ + \ 3.5) \ \ (m) \\ \mbox{height } y & \mbox{y=}1.5 \ 10^{-3} \ (-z \ + \ 15) \ \ (m) \end{array}$

Worst Case (Div=220 μ rad) \rightarrow largest SR fan \rightarrow larger quad sep. at incoming (FORWARD) focus

Betas shown use baseline beta*, but emit. to give worst divergence

Baseline $\beta_e s$ (Div $\leq 160 \mu rad$) (XYMEDICAL)

500 Red = X400 Blue=Y Stronger, closer quads 300 (m) Betas 200 100 0 -50 50 0 Z (m)

Lower divergences cases allow focus quads stronger and effectively closer together, reducing the beta maximums. Effective movement by currents in multiple magnets.

Hadron Betas from pCDR (pbetas3)

Forward Hadron Tilts

(dnnp336w.png)

Tilting untapered magnets increases space between e and lon beams. Q1pF is broken into two to decrease size of Q1ApF.

Magnets close to one another must be designed as single units with good isolation one from the other (see Brett Parker talk)

Detector Requirements

- No quadrupoles in +/- 4.5 m for Central detector for -20 mrad to +20 mrad, with REAR e.m. calorimeter down to 50 mrad for Diffractive Physics.
- FORWARD neutron detection up to 4 mrad (-4.5 to 5.5 mrad provided)
- FORWARD proton detection for Diffractive physics (see next slide)
- \bullet FORWARD proton detection down to pt=200 MeV/c for all energies
- Tagger for REAR electrons on axis but p < 90% p initial
- Luminosity measurement of by photon detection in REAR on axis.

Coverage for Diffractive Physics (elke2d.png) Deeply Virtual Compton Scattering probing gluon distributions

Also requires REAR outgoing electrons down to \approx 50 mrad

Forward Spectrometer Magnet B0 (B0)

Covers angles 5 to 25 mrad e.g. for forward p in lower energy DVCS (see above)

Warm iron and detectors super-conducting coil Direct wind cancelling dipole over electron beam and Q0eF quad inside

Spectrometer Angular Acceptance (B0-rect)

Other Hadrons Detectors

(dnnp337x)

The minimum Pt observable, defined by the 10 sigma beam size, is \approx 450 MeV/c. For 200 MeV/c pt tracks "High Acceptance" beam parameters with higher β_x^* and lower luminosity are used.

Rear Electrons & Detectors tag2.png

Polarization measurement will be in another straight

Summary

		pCDR	Now	JLab
Crossing	mrad	22	25	50
L^*_{hadron} FORWARD/REAR	m	6.7/5.5	7.0/5.3	7/3.6
$L_{electron}^{*}$ FORWARD/REAR	m	5.0/5.5	5.3/5.3	2.96/2
Baseline $\beta^*_{hadron} x/y$	cm	90/4.3	90/4.3	
Worst $\beta^*_{hadron} \mathbf{x}/\mathbf{y}$	cm	90/4.3	90/4.3	6/1.2
Baseline $\beta^*_{electron}$ x/y	cm	83/8	61/7.5	
Worst $\beta^*_{electron} \mathbf{x}/\mathbf{y}$	cm	42/5	42/5	4/0.8
Baseline $\hat{\beta}_{hadron}$ in x/y	m	1200/1400	1200/1400	
Worst $\hat{\beta}_{hadron}$ in x/y	m	1290/1500	1300/1500	4200/4200
Baseline $\hat{\beta}_{electron}$ in x/y	m	1050/500	500/400	
Worst $\hat{eta}_{electron}$ in x/y	m	2000/1000	1000/640	1100/1100
$Maximum \ B = Grad \times App$	Т	5.6	4.3	6
Hadron Local Chromatic corr.		no	no	yes
Electron Local Chromatic corr.		no	no	no

Comments on last slide

- eRHIC "Baseline" has no cooling at c of m 140 GeV
- eRHIC "Worst cases" have cooling at c of m 105 or 140 GeV
- The JLab data from Vasiliy Morozov.
- BNL Baseline has c of m energy of 140 GeV and no cooling
- The electron maximum betas in Steve Tepikian's talk are higher than those given here because he was still using the pCDR IR design.
- Hadron L*s similar between BNL and JLab
- Electron L*s less for JLab
- Electron maximum betas are similar for the two labs.
- The JLab maximum hadron betas are approximately 3 times higher than BNL's

Conclusion

- Meets all Given Requirements
- Significant improvements since pCDR:
 - Peak magnet fields $(5.6 \rightarrow 4.3)$
 - Max electron β_x (1050 \rightarrow 500)
- Minor increase in crossing angle $22 \rightarrow 25 \pmod{\text{mrad}}$
- Hadron L* distances are not very different from JLab's but they have significantly lower β^* s and higher β maximums.
- Lowering electron β s and reducing the SR fans by bringing electron quads inside the detector is being studied.

BACK UP

In the following

- L1 is the location of the magnet end closest to the IP
- IR1 is the inside radius closer to the IP; IR2 is that further from the IP.
- x is the horizontal position of the magnet ends closest to the IP, with respect to a Z axis passing through the IP parallel with the electron beam at the IP
- $\bullet \ \theta$ is the angle between the magnet axis and the Z axis
- Baseline Parameters, used for all but the "worst cases", are those without cooling and High Divergence:

 $\begin{array}{l} \mathsf{E}(\mathsf{hadron}) = 275 \; \mathsf{GeV}; \; \mathsf{E}(\mathsf{electron}) = 18 \; \mathsf{GeV} \\ \beta^*(\mathsf{hadron}) \; \mathsf{x/y} = 90/4.3 \; (\mathsf{cm}) \\ \beta^*(\mathsf{electron}) \; \mathsf{x/y} = 83/8.0 \; (\mathsf{cm}) \\ \epsilon(\mathsf{hadron}) \; \mathsf{x/y} = 20/6.1 \; (\mathsf{nm}) \\ \epsilon(\mathsf{electron})\mathsf{vu} \; \mathsf{x/y} = 22/3.3 \; (\mathsf{nm}) \end{array}$

FORWARD Proton Magnets mnnp336

	mom = 275													
		L1	DL	gap	Х	θ	IR1	IR2	OR	B1	B2	В	Grad1	Grad2
		m	m	m	cm	mrad	cm	cm	cm	Т	Т	Т	T/m	T/m
B0	3	5.30	1.20	0.50	13.3	0.00	17.00	17.00	30.0	0.000	0.000	1.300	0.000	0.000
Q1a	5	7.00	1.46	0.30	18.5	21.85	4.50	4.50	0.0	3.506	3.506	0.000	-77.903	-77.903
Q1b	7	8.76	1.61	0.90	24.2	15.00	6.50	6.50	0.0	4.097	4.097	0.000	-63.028	-63.028
Q2	9	11.27	3.60	0.50	30.5	23.11	10.80	10.80	0.0	4.291	4.291	0.000	39.736	39.736
B1	11	15.37	3.00	20.90	42.1	25.00	12.50	12.50	0.0	0.000	0.000	4.570	0.000	0.000

FORWARD Electron Magnets

mnne39d4.tab

	Worst case mnne39d4													
	mom = 18													
		L1	DL	gap	Х	heta	IR1	IR2	OR	B1	B2	В	Grad1	Grad2
		m	m	m	cm	mrad	cm	cm	cm	Т	Т	Т	T/m	T/m
Q0	3	5.30	1.20	0.50	0.0	0.00	2.60	2.60	0.0	0.451	0.451	0.000	-17.335	-17.335
Q2a	5	7.00	1.46	0.30	0.0	0.00	3.00	4.20	0.0	0.168	0.235	0.000	5.586	5.586
Q2b	7	8.76	1.61	0.90	0.0	0.00	4.36	5.66	0.0	0.218	0.284	0.000	5.008	5.008
Q2c	9	11.27	2.00	18.72	0.0	0.00	6.90	6.90	0.0	0.000	0.000	0.000	0.000	0.000
	Baseline case mom = 18 mnne39d4													
	B	aseline	e cas	e mon	n =	18	mnne39d4	4						
	Ba	aseline om = 1	e cas 18	e mon	n =	18	mnne39d4	4						
	Ba	aseline om = 1 L1	e cas 18 DL	e mon	$n = \frac{1}{x}$	18 <i>θ</i>	mnne39d4	IR2	OR	B1	B2	B	Grad1	Grad2
	Ba	aseline om = 1 L1 m	e cas 18 DL m	e mon gap m	$n = \frac{1}{x}$ cm	18 θ mrad	IR1 cm	IR2 cm	OR cm	B1 T	B2 T	B T	Grad1 T/m	Grad2 T/m
Q0	Ba mo	aseline om = 1 L1 m 5.30	e cas 18 DL m 1.20	e mon gap m 0.50	$n = \frac{1}{x}$ $\frac{cm}{0.0}$	18 <i>θ</i> mrad 0.00	IR1 cm 2.60	IR2 cm 2.60	OR cm 0.0	B1 T 0.331	B2 T 0.331	B T 0.000	Grad1 T/m -12.713	Grad2 T/m -12.713
Q0 Q2a	B m 3 5	aseline om = 1 L1 m 5.30 7.00	e cas 18 DL m 1.20 1.46	e mon gap m 0.50 0.30	$n = \frac{x}{cm}$ 0.0 0.0	18 θ mrad 0.00 0.00	IR1 cm 2.60 3.00	IR2 cm 2.60 4.20	OR cm 0.0 0.0	B1 T 0.331 0.000	B2 T 0.331 0.000	B T 0.000 0.000	Grad1 T/m -12.713 0.000	Grad2 T/m -12.713 0.000
Q0 Q2a Q2b	B m 3 5 7	aseline om = 1 L1 m 5.30 7.00 8.76	e cas <u>18</u> DL m 1.20 1.46 1.61	e mon gap m 0.50 0.30 0.90	$n = \frac{x}{cm}$ 0.0 0.0 0.0	18 <i>θ</i> mrad 0.00 0.00 0.00	IR1 cm 2.60 3.00 4.36	IR2 cm 2.60 4.20 5.66	OR cm 0.0 0.0 0.0	B1 T 0.331 0.000 0.067	B2 T 0.331 0.000 0.087	B T 0.000 0.000 0.000	Grad1 T/m -12.713 0.000 1.541	Grad2 T/m -12.713 0.000 1.541

REAR Hadron Magnets with Tapered Q1ApR (mnnp3R7t)

		L1	DL	gap	Х	θ	IR_1	IR_2	В	Bpt_1	Bpt_2	$Grad_1$	$Grad_2$
		m	m	m	cm	mrad	cm	cm	Т	Т	Т	T/m	T/m
Q1ApR	3	5.30	1.80	0.50	-14.8	-25.00	2.01	2.77	0.0	1.585	2.187	-78.833	-78.833
Q1BpR	5	7.60	1.40	2.00	-21.3	-25.00	3.00	3.00	0.0	2.365	2.365	-78.833	-78.833
Q2pR	7	11.00	2.00	21.40	-30.8	-25.00	5.00	5.00	0.0	3.713	3.713	74.250	74.250

Lower pole tip fields should allow direct wind & tapered Q1ApR

REAR Electron magnets mnne3R7a

Q1eR is tapered with constant gradient