Bunched Beam Cooling Experiment Report (and future plan)

Haipeng Wang

Jefferson Lab

Funding Support by the EIC R&D FOA 2018-2019 award of US DOE under Contract No. DE-AC05-06OR23177 and by the NSF of China under Contract No. 11575264, No. 11375245, No. 11475235 and the Hundred Talents Project of the CAS.

Contributions:

Y. Zhang (JLab PI), A. Hutton, J. Musson, K. Jordan, T. Powers, R. A. Rimmer, M. Spata, A. Sy,
S. Wang, C. Wilson, J. Yan, H. Zhang, Jefferson Lab, Newport News, VA 23606, USA
L.J Mao (IMP PI), R. S. Mao, M.T. Tang, J. Li, X.M. Ma, J.C. Yang, X.D. Yang, Y.J. Yuan, H. Zhao, H.W. Zhao, T. C. Zhao
Institute of Modern Physics, Lanzhou 730000, China

EIC Accelerator Collaboration Meeting

October 29 - November 1, 2018

- JLEIC design needs a bunched electron at 55-110MeV to cool ions to compensate the luminosity loss due to the IBS and counter balance the space charge effect on the beam emittance grow
- Purpose of this experiment was using existing IMP's SC 35 cooler at CSRm ring modified to make the pulsed electron beam to demonstrate the cooling of the ion beam from a coasting to an equivalent bunch length
- Although the beam energy and bunch length is far from the JLEIC cooler design. Understanding the strong bunched beam cooling principle, benchmark simulation tools with right the physics model is the primary goal this experiment
- May 2016, 1st experiment: bunched beam electron was formed by JLab's HV pulser cooling was observed for the 1st time. Data was taken at different injection fills
- April 2017, 2rd experiment: improved triggering control and beam instrumentation for taking data in the same injection fill so cooling process was more clearly observed
- Strong BPM (time domain) and Schottky (frequency domain) diagnostic signals confirmed the bunched beam cooling process qualitatively, implying a new physics process beyond the DC based strong cooling model
- Agree with 3D pulsed cooling model and 1D pulse + RF focusing models simulations but all of them are lack of quantitative benchmarks against to the experiemental data
- Design to improve the beam diagnostics both in hardware and software for next experiment Dec. 3-8, 2018
- Plan to move next phase of experiment at CSRe ring in 2019-2020

HIREL-CSR Layout at IMP and Machine Design Parameters

Fall 2018 EIC Accelerator Collaboration Meeting

Jefferson Lab

3

Modification of SC-35 Gun and New Switching Pulser and Fiber Optical Controller

SC35 Cooler EX-35 E-Gun Measurement on Nov. 13, 2015

Fall 2018 EIC Accelerator Collaboration Meeting

Experiment Parameters and Data Taken in 2016/2017

ION RING	IMP (CSRm ring)				
specieses	12C6+	12C6+	12C6+		
bunch charge					
charge per nucleon	0.5	0.5	0.5		
kinetic energy per nucleon	7.0	30.0	19.0	MeV	
beta	0.121	0.247	0.198		
gamma	1.007	1.032	1.020		
revolution time	4.427	2.177	2.712	us	
revolution frequency	225.907	459.342	368.687	kHz	
Harmonic Number	2	1	2		
Vrf	1200	1200	1200	\mathbf{V}	
RF frequency	451.814	459.342	737.374	kHz	
Electron Cooler	IMP (CSRm cooler)				
kinetic energy	3.81	16.34	10.35	keV	
electron pulse edge width	25	25	25	ns	
dI/dt	2.64	2.64	2.64	mA/ns	
Cooling section length	3.4	3.4	3.4	m	
Electron kick δE per turn	0.306	0.071	0.112	keV	
E beam radius at cooler section	1.25-2.5	1.25-2.5	1.25-2.5	cm	
High Voltage Pulser, DEI PVX-4150					
maximum average switching power	150	150	150	W	
optimum anode voltage	1	1	1	kV	
maximum Pulse Rep Rate at clamped grid voltage	571.2	571.2	571.2	kHz	
maximum pulse grid voltage at revolution frequency	575.0	291.0	371.0	\mathbf{V}	
maximum pulsed peak current at revolution frequency	177.36	89.09	110.91	mA	
maximum pulse grid voltage at bunch frequency	297.0	291.0	145.0	\mathbf{V}	
maximum pulsed peak current at bunch frequency	90.64	89.09	55.42	mA	
minimum negative baise to supress the dark current	-400.00	-400.00	-400.00	V	
grid voltage clamp for the 150W	220.000	220.000	220.000	V	
maximum peak current at clamped voltage	71.719	71.719	71.719	mA	

Experiment parameters

A lot of data taken at 7MeV/u from April 21-27, 2017.

On April 27, 2017 trial to ramp higher ion energy, but failed to cool it due to lack of DC cooling at injection, so beam intensity was not high enough for the cooling demonstration

JLab modified DC e-gun pulse generator's limitation

6

Cooling at injection energy at 7MeV/u [most experiment data taken at this energy]

Beam diagnostics at CSRm for bunched cooling experiment

Diagnostics	Function	Trigger	Software	1.350 s After Application of Electron Pulses					
Ion BPMs	Measure the ion bunch shape and current	Yes	Labview (JLab) with LeCroy	Outs Puised_Electron_L05_042517_211525.216_PROCERT 0.465 Integrated Electron BPM IM					
Electron BPMs	Measure the electron pulse shape and current	Yes	Scope and E- gun PLC	0.028- 0.028-					
DCCT	Measure the ion beam (bunched/coasting) current	Yes	Labview (IMP)	0.04 0.05					
Schottky	Measure the longitudinal cooling	Yes	Tektronics (IMP) Agilent (JLab)	Image Image Im					
IPM	Measure the transverse cooling	Yes	EPICS (IMP)	Due to deficiency of low impedance pre-amplifier					
Only trustable calibrated beam device is DCCT 15 x 1-ms-slices, sample time = 1 ns, covers 1.75 s, 15 million data points in total									
Time domain scope signal data acquisition									
October 29	– November 1, 2018 F	all 2018 EIC	Accelerator Collaboratio	on Meeting 8 Jefferson Lab					

Global timing and local triggering logics for the BPM data capturing within one filling Cycle

Typical cooling experiment cycle by injection filling, DC cooling on/off, RF on/off , epulse on/off conditions

BPM data analysis demonstrated the bunched beam cooling feature

BPM data demonstrated the bunched beam cooling at equilibrium condition

Turn-by-turn ion BPM signal from fast oscilloscope, 1us e-pulse width

0.5 s

0.625 s

1.75 s

- Synchrotron motion in cooled bunch is observed to be limited to narrower and narrower region during the cooling process, eventually the synchrotron motion disappeared in the narrow spike of the cooled bunch.
- That is the double Gaussian and final single Gaussian distribution through the cooling process.
- The energy spread amplitude is lower and the phase space distribution becomes more uniform during the cooling process, instabilities disappeared.

October 29 - November 1, 2018

Fall 2018 EIC Accelerator Collaboration Meeting

Turn-by-turn ion BPM signal from fast oscilloscope, 0.5us e-pulse width

- Due to the shorter e pulse width, the ions are not sufficiently cooled within 1.75 seconds. The double Gaussian distribution and synchrotron motion can still be seen at 1.75 second, the end of measurement.
- Microbunching distribution is observed again.

October 29 – November 1, 2018

Fall 2018 EIC Accelerator Collaboration Meeting

Schottky signal analysis: cooling rate τ_{cool} and dp/p estimation

uncooled bunch in the same revolution Fall 2018 EIC Accelerator Collaboration Meeting

Ion BPM data by using calculated cutoff frequency for beam transfer function

$$U_{im}(\omega) = Z_t(\omega) \cdot I_{beam}(\omega)$$
$$|Z_t| = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega / \omega_{cut}}{\sqrt{1 + \omega^2 / \omega_{cut}^2}}$$

Fall 2018 EIC Accelerator Collaboration Meeting

DC Cooling, heating and pulsed electron cooling processes

Pulsed electron cooling coasting beam without the help of RF focusing

October 29 - November 1, 2018

Fall 2018 EIC Accelerator Collaboration Meeting

Jefferson Lab

19

Integrated charge comparison in cooled and uncooled ion beam

Bunch length comparison in cooled and uncooled ion beam

Ion Profile Monitor signal from the CCD Camera of the Ionization Chamber

E-cooled bunch length

Single-particle tracking simulation developed by IMP team

Similar with BETACOOL

- Multi particle Tracking
- Parkhomchuk Cooling Force
- Betatron + Synchrotron motion
- Martini IBS model (Ring Lattice)
- Space Charge Effect (longitudinal)

Simulation and Experimental Data Support following conclusions:

- dp/p reduction ~ from 3e-3 to 6e-4 with e-pulse + RF focus cooling
- dp/p reduction ~ from 3e-3 to 1e-3 with e-pulse cooling without RF focusing
- e-pulse has a grouping bucket effect of coasting beam, i.e. bunch length=e-pulse length
- Both cooling rate are ~ 0.5sec

Ion BPM signal data:

- From shoe-box type at CSRm with 50 Ω input imp. preamp
- fcut~7.7MHz, so the BPM signal is a differential signal of ion pulse shape
- Signal voltage integration includes noise buildup (with slope)
- After the slope correction, the signal at the pulse ends generated unphysical dips
- The pulse distortion has been ruled out due to the external circuit capacitance or amp/cable mismatch

Improvement solution in next experiment (Dec. 3-8, 2018):

Schottky signal data:

- Used same signal from ion BPM
- Poor S/N ratio in high freq. response for Schottky
- Used RSA5100A (RSA385A) spectrum analyzer.
 Saved slow IQ data.
- IQ data obtained has a low sampling rate 48.8kS/s
- RBW=100Hz, spectrum resolution is limited to ~32Hz only even with a CFFT/ICFFT HPF/LPF reprocessing
- Data processing by further digital filtering out the high/low frequency coherence/incoherence noise is challenging
- Rebuild a new show-box BPM. Use 1MΩ, 80MHz BW preamp, so cutoff freq. drops to ~386Hz, now push-pull effect, no FFT/IFFT correction in data post processing (Done now)
- Use a high sampling rate spectrum analyzer (Agilent N9020A) with a fast triggering with LeCroy scope (Waverunner 640 zi)
- Improve data triggering and sampling techniques on both instruments
- Do the bench RF measurement for the beam-to-signal transfer function (Done in Sep. 2018)
- Do the bench calibration by the wire-stretching technique (Done in Sep. 2018)
- Old ion BPM is going to be bench calibrated, so all old 2017 data can be reevaluated.
- Possible measurement of the transverse Schottky side band signals for transverse betatron oscillation damping (under October 29 – November 1, 2018

 Study)
 Study

New ion BPM calibration results

Newly installed ion BPM at CSRm, IMP, Sep. 26, 2018

Time domain calibration result

26 **Jefferson Lab**

Zin

 R_3

70ns

250kHz

R₁

15ns

 \mathbf{K}_2

1V flat top

Grid: 5mm/grid; Scale: mm; Errors: up to +2mm in x direction; +2mm in +y direction

October 29 – November 1, 2018

Schottcky signal improvement

Mock-up signal of Schottcky by AFG with phase modulation on Agilent 9020a for experiment 2018

- Better understanding to the Schottky signal harmonic sideband structure now
- Signal also indicates the dominated coherence response from other uncooled bunch
- Poor RBW (IF frequency) due to the slow requisition rate of IQ data
- Need to improve the triggering, avoid transverse resonance signal pickup, using LPF/HPF circuits
- Need to do a better instrument setup and signal processing to improve S/N ratio

Future experiment plan on CSRe ring (2019-2020)

- Move experiment program from CSRm to CSRe ring. Modified SC300 Cooler with pulsing capability will extend the ion energy from current 30MeV/u up to 400MeV/u but similar e-pulse structure
- The electron pulse length from the current of 20m down to the pulse length comparable to the shorter ion bunch length at ~2m by a new pulser technology
- JLab is responsible to design and build the HV pulse inside of SF6 tank
- Better beam diagnostics with resonator Schottky and Stochastic cooling pickup/kicker pickups
- Faster electronics, slower cooling rate at higher ion energy, better for the beam diagnostics

SC300 E-cooler at CSRe ring to be modified

Fall 2018 EIC Accelerator Collaboration Meeting

Next Cooling Experiment in 2019 at CSRe with SC300 Cooler

Please cite this article as: G.Y. Zhu, et al., Stochastic con Nuclear Inst. and Methods in Physics Research A (201	poling experiments for CSRe at IMP, ION RING	IMP (CS	Rm ring)	IMP (C	SRe ring)	-
https://doi.org/10.1016/i.nima.2018.09.023	speciese	s 12C6+	12C6+	12C6+	12C6+	
	bunch charg	e				
la. 1. he parameters in the simulation of CSRe stochastic c	cooling. charge per nucleo	n 0.5	0.5	0.5	0.5	
Parameters Numerical Values	- Proposed bunch length (c	z) 20	20	19.0	280.0	m M-V
Beam C ⁶⁺	kinetic energy per nucleo	n 7.0	30.0 968 3	18.0	380.0	Mev
Energy 380MeV/u	experiment	a 0.121	0 247	0.193	0 702	
Particle number 7.0*10 ⁷	narameters on gamm	a 1.007	1.032	1.019	1.405	
Initial momentum spread (rms) $\Delta p/p=\pm 8.0*10^{-4}$	gamma transitio	n 5.168	5.168	2.629	2.629	Mao's at COOL2009
CSRe circumference 128.8 m	CSRe ring phase slip facto	r 0.948	0.902	0.818	0.362	
Distance from pickup to kicker 46.6 m	revolution time	e 4.427	2.177	2.784	0.765	us
Electrode length 2.76 m	revolution frequence	y 225.907	459.342	359.134	1306.353	kHz
Phase velocity of electrode 0.72	Harmonic Numbe	r 2	1	1	1	
Bandwidth 100 MHz – 600 MH	Iz bucket height - eS	C 1.687E-07	3.365E-07	3.182E-07	5.637E-07	
Gain 106 dB		rf 1200	1200	600	600	
Transition energy γ_t 2.629	Kr irequent bucket height V	y 451.814	439.342 5 166E 06	3 017E 06	1300.333 1.405E.05	KHZ
Dispersion at pickup/kicker 6.15 m/0.8 m	energy spread ratio: eSC/V	rf 0.095	0.065	0.105	0.040	see table 5.2 m 51 book
	chergy spread ratio esserv	0.095	0.000	0.100	0.010	
	Resonant Schottky Pickup	IMP (CSF	Rm cooler)	IMP (CS	Re cooler)	
35		Plus Minus 0	.5MHz	Plus Minus 2	MHz	
Longitudinal Schottky spectrum	TM010 mode resonance frequence	y 5.8736	5.8736	244.78	244.78	MHz
at harmonic number m=149	harmonic numbe	r 26	12	681	187	
Ĥ 25 - 130 s						
N/N	Electron Cooler	IMP (SC	35 cooler)	IMP (SC3	300 cooler)	
Ξ^{20}						
₹ 15- 	kinetic energ	v 3.81	16.34	9.80	206.95	keV
e ou s	bei	a 0.121	0.247	0.193	0.702	
	gamm	a 1.007	1.032	1.019	1.405	
	electron pulse edge widt	h 25	25	25	25	ns
	electron pulse edge widt	h 0.035	0.072	0.056	0.205	rad
0	dI/o	lt 2.64	2.64	2.64	2.64	mA/ns
	Cooling section lengt	h 3.4	3.4	3.4	3.4	m
244.0 244.1 244.2 244.3 244	.6 Electron kick δE per tui	n 0.306	0.071	0.118	0.005	ke v
Frequency [MHz]	max peak curret max magnetic fiel	d 0.15	0.15	0.15	0.15	
Fig. 17. Longitudinal stochastic cooling experiment wan TOF nethod.	eathode radiu	s 1.25	1.25	1.25	1.25	cm
October 29 – November 1, 2018	Fall 2018 EIC Acceleratoric Collaboratio	n Meetina	1.25-2.5	1.25-4.0	1.25-4.0	cm 29
		0				- Jerrerson Lad

Summary

- 1. Bunched electron beam cooling 12C+6 ion beam at 7MeV/u has been demonstrated at CSRm ring at IMP, China by our IMP/JLab collaboration team
- 2. With the help of RF focusing, the Ion bunch length has been reduced from the coasting to ~3m long by a longer electron bunch but as short as 18m within about 0.5 second cooling time
- 3. The longitudinal cooling of momentum spread has been reduced from ~2e-3 to ~6e-4 with a similar cooling rate
- 4. The simulation models developed so far agree with the measurement results qualitatively.
- 5. Beam diagnostics like ion BPM and Schottky signals strongly support these evidences but obtained data so far lacks of calibrations and measurement accuracies for a further quantitatively benchmark for the simulation codes.
- 6. Beam instrumentation improvement both in hardware and software has been designed, planned and prepared for the next experiment in Dec. 3-8, 2018
- 7. Pushing the next phase of experiment to be done in 2019-2020 at CSRe ring with a higher ion energy, modifying the SC-300 Cooler, and a better beam diagnostics are specified and under the upgrade
- 8. IMP in China is still the best place and the fastest way to demonstrate the strong bunched beam cooling in order to benchmark our cooling simulation tools for our CCR/ERL E-cooler design for JLEIC

Backup slides

Event triggers and timing logics for sychronization

Coasting beam cooling					Bunched beam cooling									
		事例名	时间		次数	t.			事例名	时间	IJ	ł	次数	
事件	件0	c05a0000	1000	毫秒	1	次		事件0	c05a0000	100) 毫利	沙	1	次
事任	件1	c0020001	1000	毫秒	10	次		事件1	c0020001	1000) 毫利	少	10	次
事任	件2	c03b0001	1000	毫秒	1	次		事件2	c03b0001	2000) 毫利	少 [1	次
事(件3	c00c0001	3000	毫秒	1	次		事件3	c0050001	50	毫利	少 [1	次
事(件4	c00c0001	500	毫秒	1	次		事件4	c00c0001	50	毫利	少 [1	次
事(件5	c05b0001	400	毫秒	1	次		事件5	c05b0001	50	毫利	少 [1	次
事(件6	c02b0001	100	毫秒	1	次		事件6	c02b0001	50	毫利	少 [1	次
事任	件7	c01b0001	5000	毫秒	1	次		事件7	c01b0001	50	毫利	少	1	次
事(件8	c00c0001	50	毫秒	1	次		事件8	c00c0001	100	毫利	少	1	次
cC cC	c0020001: 束流注入累积 c0050001: 触发高频			c05b0 c02b0	c05b0001: 触发频谱仪 c02b0001: 触发示波器			c04b0001: 触发IPM c05a0000: 事例准备				ζ.		
cC)3b0	001: PLC模式	式转换		c01b0	0001:	角	虫发脉冲	电子束	c00c0	001: 2	ご事	例	

(202000)	1000 x10 ms	10s注入,每次注入时间1s,注10次	
(00 5 000)	Soux	注入完成后直接开启高频,得到bunch 束团,500ms后关	〔闭电子束,之 之〕
Cosponol	23+2 × 1	关闭电子束, plc转为脉冲模式, 等待触发脉冲电子束 一	
[000]000]	30×1	空事例	
(046 000)	50+1	开启profile monitor	关闭dc电子到 开启脉冲电子
(350 000)	50 × 1	开启频谱仪	bunch ion beam 有2.5s的
(026 000)	50×1	开启示波器	heating
(016000)	100 X 1.	开启脉冲电子束 events	

Octobel 29 - Novembel 1, 2010

Fail 2010 EIC Accelerator Collaboration Meeting

New Ion BPM Mechanical Assembly Model and CST Wakefield Simulation Setup

300

250

CST wakefield simulation on the pickup voltage signals

Frequency spectrums indicate a possible resonance structure ~310MHz

Non-linear responses of peak-to-peak voltage at pickups

Impedance matching and pulse current to pickup voltage transfer function calibration

- Using AFG in square pulse waveform in pulse width of ~100ns and frequency of 250kHz to simulate cooled ion bunch in the cooling experiment.
- 2. Exanimate the pickup signal (up/down, in/out) or their pair's sum signal for any distortion due to the circuit mismatch. A high input impedance scope connect to these signals might be needed first in order to directly measure the pulse shape (or transfer function)
- 3. After the network impedance matching, do the V_{out} =0.0258 V_{in} check, Z_{out} should use 50 Ω input impedance
- 4. Do the K factor calibration for all pickup ports. If Z_{out} is not connected to the scope, using a 50 Ω load to terminate it.
- Exercise the pulse pickup voltage integration over the pulse length T. Last equation in calibration is critical for our bunch cooling experiment

Confirm:

$$q_{1} = \int_{0}^{T} I_{1} dt = \int_{0}^{T} \frac{V_{up}}{K_{up}} dt = \int_{0}^{T} \frac{25V_{out}}{\Omega} dt$$

- This resonance modes have been checked out yesterday by VNA Agilent 5701C (frequency). Two resonance frequencies at 207 MHz and 395MHz have been found. Their coupling to the pickups are strong β=0.5~1. Only "Out" plate's coupling is weaker. Their S11 measurement screen shots are shown as following
- S11 on the stretched wire also indicated strong coupling to these modes indication strong coupling to the beam and pickups

- In reality without a wire, the beam bunch could excite these two modes
- Further S21 measurements (from pickup to pickup or from pickup to the wire) indicated the loaded Q of the first mode is ~35. The second mode is ~65. Connect a 50ohm load on the third pickup ports lower the Q down to 20~25, confirmed the strong damping effect of this mode
- Using aluminum foils to cover the end flanges had nonsignificant effect to the resonance peaks, indicating that these modes are the resonance e-fields between the pickup plates. Then the S21 signal had a large change when using a screw drive to short corresponding plates, confirming this hypothesis.
- CST simulation in Eigen solver also indicated this at ~370MHz mode.
- The effectiveness of these mode depends on its loaded Q, it is stainless steel vacuum vessel, its Q if is less than 100, then it has a less effect to the beam bunch (length ~200ns) induced voltage signal, which is true from our bench measurement result
- Following slide shows the data fitting result on one of downloaded data from Agilent 5071C for "down" plate using the S11 signal only

