EIC ACCELERATOR COLLABORATION MEETING 2018

HIGH-BANDWIDTH FEEDBACK SYSTEMS FOR JLEIC

Z.A. CONWAY Physics Division Argonne National Laboratory

01 November 2018 Argonne, Illinois 60439

ACKNOWLEDGEMENTS

People who deserve more credit than they receive.

- Bob Rimmer (JLAB)
- Uli Weinands, John Carwardine, Herman Cease, Louis Emery, Chihyuan Yao and Xiang Sun (ANL-APS)
- Mike Kelly, Brahim Mustapha and Josh Rohrer (ANL-PHY).
- Al Barcikowski, Glenn Cherry and Rick Fischer (ANL-NE).
- Sang-hoon Kim (MSU-FRIB)
- Chris Hopper (ITW)

ANL-APS/PHY 30 kV, 22 ns, Fast Kicker

MOTIVATION

Jones Report

2017 Jones Report:

Row No.	Proponent	Concept / Proponent Identifier	Title of R&D Element	Panel Priority	Panel Sub- Priority
18	PANEL	JLEIC	Develop a high current magnetized electron injector	High	В
19	PANEL	JLEIC	High power fast kickers for high bandwidth (2ns bunch spacing) feedback	High	В
20	PANEL	JLEIC	Complete the design of the gear change synchronizations and assess its impact on beam dynamics	High	В

- JLEIC luminosity requires the storage of high-current electron beam distributed over many bunches spaced at ~500 MHz (PEP-II = 476 MHz).
- The interaction of these bunches with the accelerator hardware can give rise to collective effects called coupled-bunch instabilities.
- JLEIC plans on using PEP-II hardware: RF cavities, vacuum chambers, magnets, etc.

APPROACH

FY2018 NP EIC Accelerator FOA

- Collaboration with JLAB and ANL.
- Apply recent ANL developments in transverse and longitudinal kicker hardware to the JLEIC.
- JLEIC electron storage ring plans to use the PEP-II RF cavities, magnets, vacuum chambers and other hardware.

JLEIC TO PEP-II COMPARISON

Commonalities between the 3 rings

- PEP-II operation experience = electron beam is unstable without feedback.
- The PEP-II experience is informative. We need detailed studies of the JLEIC to account for:
 - Longer JLEIC relative to the PEP-II low- or high-energy rings,
 - More and different types of RF cavities (e.g., crab cavities),
 - modified RF cavity tuner positions, and
 - different beam current, synchrotron frequency, etc.
- There is enough information to start.

	PEP-II LER	PEP-II HER	JLEIC
Energy	3.1 GeV	9 GeV	3-12 GeV
Current	3.2 A	2 A	≤ 3 A
Bunch Spacing	238 MHz	238 MHz	476 MHz

J.T. Seeman, EPAC'08, TUXG01, Pg. 946 F.C. Pilat, IPAC'18, TUXGBD3, Pg. 590 3

PROPOSAL WORK OVERVIEW

What are we doing?

- A broad spectrum of coupled bunch modes will be excited, predominantly, by the HOMs of the PEP-II RF cavities and the resistive wall impedance.
- To do: simulate and estimate the driving terms for coupled bunch instabilities; estimate required feedback bandwidth, damping time and voltage; design transverse and longitudinal feedback kickers; and prototype transverse feedback kicker.
- Digital feedback systems capable of operating with 500 MHz bandwidths are commercially available from Dimtel (San Jose, CA) and Instrumentation Technologies (La Jolla, CA).
 - PEP-II digital feedback systems were designed to operate at bandwidths greater than where they were operated.
 - ALS, BESSY, KEKB, PLS, etc already operate @ 500 MHz, 2 ns.

OPERATING BANDWIDTH

Bounding the task

- # of bunches = # of modes, m.
- Each multi-bunch mode has associated frequencies:

$$f_{MB} = l * f_{bunch} \pm (m + \nu) * f_{rev}$$

- Feedback Frequency ($f_{RF} = 476 MHz$): Transverse Feedback: ~DC to $f_{rf}/_2 = ~DC - 238 MHz$ Longitudinal Feedback: $n * f_{RF} - \frac{f_{bunch}}{4} = 1,547 MHz$
- PEP-II:
 - Transverse kickers ~ 3.4 kV per kicker.
 - W. Barry et al, PAC'95 (based on ALS design) .
 - Longitudinal kickers
 - P. McIntosh et al, PAC'03, 1.071 GHz with BW = 238 MHz (based on DAFNE design)

TRANSVERSE KICKER TRANSMISSION PROPERTIES

Measured with network analyzer.

TRANSVERSE KICKER TESTED WITH BEAM

APS Injector Test Beam Line.

Striplines, 720 mm

TRANSVERSE KICKER TO DO

Future Work.

- APS-U kicker to operate with a 6 GeV, 200 mA, electron beam.
- Not the LJLEIC electron storage ring beam. Work to do.
- Optimize length.
- Evaluate HOM interactions up to 6 GHz.
 - Kicker strip-lines strongly coupled to the RF transmission lines.
 - Expect good HOM damping and power removal.
- Evaluate kicker thermal properties.
- Add vacuum pumping and diagnostics.

Feedthroughs

11

LFB KICKER CONCEPT

Background

- Chose a waveguide over-damped resonator for the APS-U longitudinal feedback (LFB) kicker:
 - Used at ALS, BESSY-II, DIAMOND, <u>Duke</u>, DAΦNE, HIGS, HLS-II, KEK-B, PEP-II, etc,
 - High shunt impedance,
 - Low HOM shunt impedances,
 - High power handling, and
 - Straightforward fabrication.
- APS-U LFB kicker is much more reentrant for high shunt impedance.

12

W.Z. Wu et al., NIMA, Vol. 632, # 1, 11 March 2011, Pg. 32-42

ELECTROMAGNETIC DESIGN

APS-U LFB Performance Parameters

Parameter	Value			
Frequency, f_0	1.027 GHz ± 18 MHz			
Bandwidth	59 MHz (+0/-5) MHz			
Beam Pipe Radius	11 mm			
Total Q_{ext}	17.5 (17.4 with <i>f</i> ₀ = 1.027 GHz)			
Q_{ext} per port	70.0 (69.6 with <i>f</i> ₀ = 1.027 GHz)			
Q_{o}	1.31x10 ⁴ (OFHC Copper)			
$R_{shunt,a}/Q$	320 $\frac{R_{shunt,a}}{V_a} = \frac{V_a^2}{V_a}$			
Required Voltage per LFB Kicker	2,000 V $Q - \omega_0 U_0$			
Voltage with 2 500 W Amplifiers	4,710 V $Voltage = V_a$			
$4P_{for}/$	$= \sqrt{R_{Shunt} * Power}$			

$$P = \frac{\frac{1}{Q_{ext,1}Q_{ext,2}}}{\left(\frac{1}{Q_0} + \frac{1}{Q_{ext,1}} + \frac{1}{Q_{ext,2}}\right)^2 + \left(\frac{f}{f_0} - \frac{f_0}{f}\right)^2}$$

LONGITUDINAL WAKE FIELD IMPEDANCE

Monopole Modes Only

LFB KICKER EIGENMODE SHUNT IMPEDANCES

Eigenmodes from 1.027 through 1.8 GHz Before the Reentrant Nose Optimization

		Frequency (GHz)	R ⊥, _z / Q (Ω)	R ⊥, x / Q (Ω)	R ⊥,y /Q (Ω)	Q loaded
	0	1.027	251.8	0.0	0.0	17.4
R _{sh,a}	V_a^2	1.079	0	1.9	1.9	4.5
$\overline{0}$ =	() * II	1.0897	0	6.0	6.0	4.3
$\mathbf{R}_{sh,\perp}$	W + U	1.0898	5.1	1.9	1.9	4.3
	1 /2	1.191	75.5	0	0.0	5.85
	$=$ $\overset{V_{\perp}}{}$	1.430	0	52.7	119.9	64.3
Q	ω * U	1.430	0	119.9	52.7	64.3
<u> </u>		1.484	72.5	0	0	28.1
		1.786	0.3	0	0	94.6
		1.796	0	27.4	0.1	119.8
	TM ₀₁₀ -like Mode			Dipole Mode		Argonne

LFB KICKER 50 Ω FEEDTHROUGHS

1.033 GHz High Power Feedthroughs

SLAC PEP-II Feedthrough

Kyocera/Cosmotec Custom Feedthrough

- Top Left: SLAC PEP-II LFB Kicker Feedthrough. Used now.
- Top Right: Cosmotec 9 kV feedthrough tested to 30 kV with 6 ns pulses.
- Bottom, Right: 20 kV Kyocera feedthrough. Based on 15 kV CLIC feedthrough.

CLIC/Kyocera 20 kV Feedthrough

Feedthroughs from the APS-U Injection Kickers

LFB KICKER 50 Ω FEEDTHROUGHS

Feed Through RF Response

- SLAC PEP-II LER LFB kicker feedthrough pass band characteristics look good for our application.
- Need to modify the dimensions of the feedthrough or the LFB kicker inner conductor diameter.
- Other options considered:
 - Use existing feedthrough from APSU injection/extraction kickers.
 - Questionable power handling and passband characteristics.
 - Use existing feedthrough from CLIC transverse kickers.
 - Hard to get desired passband.
 - Design new.

CLOSING REMARKS

- Developing hardware for JLEIC transverse and longitudinal feedback kickers.
- Working on preliminary design concepts until JLEIC requirements are clarified.

18

Build prototype transverse kicker and test.

