JLEIC Ion Booster

Edith Nissen

EIC Accelerator Collaboration Meeting

October 29 - November 1, 2018

Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

Outline

- A look at the previous design, as well as the criteria for a redesign
- Background on the Lattice types in use
- The booster lattice
- How the booster fits into the larger complex
- Injection Simulations
- RF ramping simulations
- Future work

Previous Design

×

- The same methods which allow the lattice to have an imaginary transition crossing also give rise to a nonlinear dispersion.
- In this particular case we ended up with the RF cavity right at the peak, but it still leads to synchrobetatron issues.

- Increase in top energy from 7.1 GeV to 8 GeV
 - Requires increase in dipole length, due to fixed 3T dipole requirement.
- Imaginary transition not required, but transition crossing not allowed
 - Opens up other lattice possibilities

$$\alpha = \frac{1}{L} \int \frac{D}{\rho} ds$$

• The momentum compaction is the rate of change of the path length with respect to momentum

$$\frac{\Delta t}{t} = \eta \frac{\Delta p}{p} = \left(\alpha - \frac{1}{\gamma^2}\right) \frac{\Delta p}{p}$$

$$\alpha = \frac{1}{\gamma_t^2}$$

- Three possible cases:
 - $\gamma > \gamma_t$, $\eta > 0$, Δt increases with energy, revolution frequency decreases with energy.
 - $\gamma < \gamma_t$, $\eta < 0$, Δt decreases with energy, revolution frequency increases with energy.
 - $\gamma = \gamma_t$, $\eta = 0$, Δt and revolution frequency do not vary with energy, also known as isochronous.

Flexible γ_t background

Arcs: FMC Cell

- Produced here using three identical FODO cells
- The dipoles are removed from the center FODO cell
- The quad strengths are varied on either end of the empty cell to alter the momentum compaction of the lattice.

• Using sextupoles placed in the empty cell, the nonlinear dispersion can be controlled and zeroed out for the arcs

Arcs: Full Design

- The straights require enough length to close the arcs of the figure-8
- Require sufficient gaps to hold RF cavities, injection and extraction as well as possible cooling
- Also require sufficient space for bypassing at the crossing point
- Triplets were chosen to achieve this

Straights Design

- The entrance and exit Twiss parameters were matched, with the total sections to be used to tune the machine.
- A 5 cell design was chosen so that elements would not interfere at the crossing point

Final Machine

Final Machine Spot Size

 With an injection emittance of 1.21 mm mr The current lattice is compatible with a 4 cm beam pipe radius

Element	Length	Number	T (max)	T/m (max)	T/m^2 (max)
Dipole	142.18cm	64	3		
Quadrupole	40cm	70		29.56	
Quadrupole	80cm	12		21.68	
Sextupole	20cm	24			305.84

There are 14 distinct quadrupole values (10 in the arcs, 4 in the straights), and 8 distinct sextupole values.

The Larger Complex

 The linac was moved to the West side of the booster to avoid having the injection and extraction lines cross.

Linac to Booster

 Simple arc with matching straight magnets at either end and an nπ dispersion suppression scheme

Element	Length	Number	T(max)	T/m (max)
Dipole	1.0 m	12	0.34	
Quadrupole	40 cm	16		2.24

Booster to Collider

Injection Methods

- The current design calls for foil stripping injection in a dispersion free section of the accelerator.
- Phase-space painting will be utilized via a closed orbit bump
- Closed orbit bump follows:

$$q_{offs} = a \sqrt{\frac{2t}{T} - \left(\frac{t}{T}\right)^2}$$

Injection Simulations

The injection simulations were performed over 300 turns, The offsets were selected such that they match the target beam size after injection.

Ramping Simulations

These simulations used a single injection, followed by 100 turns at injection energy, 10 turns changing the phase of the RF, and a ramp at 5.8° offset for 2.3 KeV of acceleration per turn.

Future Work

- Finish determining the working point
- Design crossing point chicane(s)
- Finalize placement of injection and extraction sections
- Determine placement for potential polarimetry, spin rotators, and electron cooling.
- Prepare for possible energy upgrades

Thank You for Your Attention

