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Previous Design
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Imaginary Transition and Nonlinear Dispersion
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 The same methods which allow the
lattice to have an imaginary transition
crossing also give rise to a nonlinear
dispersion.

* In this particular case we ended up with
the RF cavity right at the peak, but it still
leads to synchrobetatron issues.
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New Design (goals)

* Increase In top energy from 7.1 GeV to 8 GeV

- Requires increase In dipole length, due to fixed 3T dipole
requirement.

* Imaginary transition not required, but transition
crossing not allowed

- Opens up other lattice possibilities
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Flexible y, background
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* The momentum compaction is the rate of change of the
path length with respect to momentum
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* Three possible cases:
* y>y,, >0, At increases with energy, revolution frequency decreases with energy.
* Y<y,, N<0, At decreases with energy, revolution frequency increases with energy.
* vy=y,, n=0, At and revolution frequency do not vary with energy, also known as isochronous.
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Flexible y, background
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Arcs: FMC Cell
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 Building block of the new design is a FODO cell
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Arcs: FMC Cell
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* Produced here using three identical FODO
cells

2. * The dipoles are removed from the center
- 1. FODO cell

00« The quad strengths are varied on either
[ end of the empty cell to alter the
momentum compaction of the Ilattice.
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Arcs: FMC Cell (Control of Nonlinear Dispersion)
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Arcs: Full Design
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Straights: Goals

* The straights require enough length to close the arcs
of the figure-8

* Require sufficient gaps to hold RF cavities, injection
and extraction as well as possible cooling

* Also require sufficient space for bypassing at the
crossing point

* Triplets were chosen to achieve this
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Straights Design
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« The entrance and exit Twiss parameters
were matched, with the total sections to
be used to tune the machine.

« A5 cell design was chosen so that
elements would not interfere at the
crossing point
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Final Machine
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Final Machine Spot Size
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« With an injection emittance of 1.21 mm mr The current lattice is compatible with a 4 cm
beam pipe radius
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Element Count

Length Number T(max) T/m(max) T/m”"2 (max)

Dipole 142.18cm 64 3

Quadrupole 40cm 70 29.56

Quadrupole 80cm 12 21.68

Sextupole 20cm 24 305.84

There are 14 distinct quadrupole values (10 in the arcs, 4 in the straights), and 8
distinct sextupole values.
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The Larger Complex
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 The linac was moved to the
West side of the booster to avoid
having the injection and

extraction lines cross.
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Linac to Booster
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Booster to Collider
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Injection Methods

* The current design calls for foil stripping injection in a dispersion free section of the
accelerator.

* Phase-space painting will be utilized via a closed orbit bump
 Closed orbit bump follows:
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Injection Simulations
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The injection simulations were performed over 300 turns, The offsets were selected such that they match the target beam
size after injection.
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Ramping Simulations
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These simulations used a single injection, followed by 100 turns at injection energy, 10 turns changing the phase of the
RF, and a ramp at 5.8° offset for 2.3 KeV of acceleration per turn.
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Future Work

* Finish determining the working point

Design crossing point chicane(s)

Finalize placement of injection and extraction sections

Determine placement for potential polarimetry, spin rotators, and electron cooling.

Prepare for possible energy upgrades

23 Jefferson Lab



Thank You for Your Attention
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