Collective Effects in JLEIC

JLEIC Impedance Study Collaboration

CASA:	K. Deitrick, R. Li, T. Satogata,
RF Group:	J. Guo, F. Marhauser, R. Rimmer, H. Wang, S. Wang
Engineering Group:	C. Hutton, T. Michalski, M. Wiseman, R. Lassiter
ODU:	J. Delayen, H. Park, S. Sosa, S. De Silva

Outline

- 1. Introduction
- 2. Impedance Studies for JLEIC
- 3. Collective Instability Estimations
 - -Wakefield-induced instabilities
 - Two-stream instabilities
- 4. Summary

1. Introduction

- Design goals of JLEIC
 - -Luminosity: 10³³~10³⁴ [cm⁻²s⁻¹]
 - Wide range of $E_{CM:}$ 30~100 [GeV]
 - -Wide range of ion species
 - High polarization (~70% for e⁻ and light ions)

- Special Features of JLEIC
 - Figure-8 rings
 - High-energy bunched beam electron cooling

- Goal of Collective Effect Studies for JLEIC Ensure beam stability and phase space quality for
 - a wide range of energies for the electron and ion beams during collision
 - wide range of ion species
 - the whole ion bunch formation process

Luminosity Concepts and Features of Collective Effects

• Luminosity concepts of JLEIC

-Moderate single bunch charge, with low emittances and short bunch length (1.2~1.4 cm)

- -High bunch rep rate (n_b =3420)
- small beta at IP (1 cm)

- Implication for behaviors of collective effects
 - Moderate single-bunch effects (except at low energies)
 - -Strong coupled-bunch effects

JLEIC Baseline e-p Parameters

CM energy	GeV	21.9 (low)		21.9 44.7		63.3 (bigb)	
				(meanann)		(mgn)	
		р	е	р	е	р	е
Beam energy	GeV	40	3	100	5	100	10
Collision frequency	MHz	4	76	47	476		′ 6
Particles per bunch	10 ¹⁰	0.98	3.7	0.98	3.7	0.98	0.93
Beam current	А	0.75	2.8	0.75	2.8	0.75	0.71
Polarization	%	80	80	80	80	80	75
Bunch length, RMS	cm	3	1	1	1	1	1
Norm. emitt., horiz./vert.	μm	0.3/0.3	24/24	0.5/0.1	54/10.8	0.9/0.18	432/86.4
Horizontal & vertical β*	cm	8/8	13.5/13.5	6/1.2	5.1/1	10.5/2.1	4/0.8
Vert. beam-beam param.		0.015	0.092	0.015	0.068	0.002	0.009
Laslett tune-shift		0.06	7x10 ⁻⁴	0.055	6x10 ⁻⁴	0.056	7x10 ⁻⁵
Detector space, up/down	m	3.6/7	3.2/3	3.6/7	3.2/3	3.6/7	3.2/3
Hourglass(HG) reduction			1	0.87		0.86	
Luminosity/IP, w/HG, 10 ³³	cm ⁻² s ⁻¹	2	2.5	21.4		5.9	

For the electron ring, we consider Ee=3, 5, 10 GeV For the ion ring, we consider Ep=100 GeV (middle column)

Collective Effects in the JLEIC Complex

Electr	on Ring	Ion Rii	ngs	Electron Cooler
Incoherent:Coherent:Scattering:	Laslett tune shift, emittance growt Single-bunch Instability Coupled-bunch Instability IBS Touschek scattering Residual gas scattering		owth, halo induced by wakefield or impedances	 Space charge CSR BBU Scattering Two stream effects
 Heat load Feedback Two-stream Ion eff 				

• Impedance budget studies requirement

- Complete inventory of impedance-generating components
- Engineering design and drawing of each components
- -EM field modeling for wakefield or impedance spectrum
- Current status of impedance studies in JLEIC
 - Engineering design is still in the initial phase
 - Component counts are done (subject to modification)
 - Impedance are estimated using impedance budget of existing machines for reference

•	Component Counts (T. Michalski)							
	Elements	e-Ring						
	Flanges (pairs)	1215						
	BPMs	405						
	Vacuum ports	480						
	Bellows	480						
	Vacuum Valves	23						
	Tapers	6						
	Collimators	16						
	DIP screen slots	470						
	Crab cavities	2						
	RF cavities	32						
	RF valves	68						
	Feedback kickers	2						
	IR chamber	1						

• Impedance Estimation (K. Deitrick)

Broadband Impedance	Reference: PEP-II	Reference: SUPERKEKB	
<i>L</i> [nH]	99.2	28.6	
$\left Z_{_{\parallel}} / n \right $ [Ω]	0.09	0.02	$\leq 0.1 \Omega$
k_{\parallel} [V/pC]	7.7	19	
$\left Z_{\perp}\right $ [k Ω/m]	60	13	<mark>≤ 0.1 ΜΩ</mark>

- JLEIC plans to use PEP-II vacuum systems
- Effective impedance is bunch length dependent

Broadband Impedance Estimation: JLEIC ion-Ring

Component Counts

Elements	p-Ring
Flanges (pairs)	234
BPMs	214
Vacuum ports	92
Bellows	559
Vacuum Valves	14
Tapers	6
Collimators	16
DIP screen slots	-
Crab cavities	8
RF cavities	40
RF cavity bellows	40
RF valves	24
Feedback kickers	2
IR chamber	1

(T. Michalski) • Impedance Estimation

Broadband Impedance	Reference: PEP-II	
<i>L</i> [nH]	97.6	
$\left Z_{\parallel} / n \right $ [Ω]	0.08	≤ 0.1 Ω
k_{\parallel} [V/pC]	8.6	
$\left Z_{\perp}\right $ [k Ω/m]	80	<mark>≤ 0.1 MΩ</mark>

- The short bunch length (1.0cm) at collision is unprecedented for the ion beams in existing ion rings
- Bunch length varies through the whole bunch formation process

(K. Deitrick)

Impedance Measurement vs. Calculation

(V. Smaluk, eeFACT2016)

Narrowband Impedance Estimation: JLEIC e-Ring

• RF cavity in e-Ring (PEP-II cavities)

PEP II cavity 476 MHz, single cell, 1 MV gap with 150 kW, strong HOM damping,

Narrowband Impedance : JLEIC ion-Ring

• 956 MHz 2-cell Cavity (F. Marhauser)

as tradeoff between accelerating and HOM-damping efficiency

with coaxial counlers

Narrowband Impedance : JLEIC ion-Ring

• 956 MHz 2-cell Cavity (F. Marhauser)

Fall 2018 EIC Accelerator Collaboration Meeting

15

Narrowband Impedance: IR Chamber

Narrow Impedance : Crab Cavity (e-Ring: 2 crab cavities, Ion Ring: 8 crab cavities)

- Prototype converging to a 952.6 MHz 2-cell RFD cavity. (HK Park)
- Bare cavity impedance

Damping under study

2 hook couplers

ran ∠018 EIC Accelerator Collaboration Meeting

1/

- We are at the beginning phase of impedance studies
- Preliminary estimations are done
- Engineering design and EM modeling are underway

3. Collective Instabilities in JLEIC

- Wakefield induced instabilities
 - Single bunch instability
 - Coupled bunch instability

- Two-stream instabilities
 - Electron cloud in the ion ring
 - Ion effect in the e-ring

Single Bunch Instability: Longitudinal Microwave Instability

Longitudinal wakefield and momentum compaction can form a positive feedback loop to amplify density modulation

Longitudinal Mode Coupling Instability •

2.0

1.5

Single Bunch Instability: Longitudinal Microwave Instability

• Longitudinal Single-Bunch Instability Threshold

$$\left|\frac{Z_{\parallel}(n)}{n}\right|_{\text{eff,th}} = \frac{2\pi |\eta| (E/e)\sigma_{\delta}^{2}}{I_{peak}}$$

		PEP-II (LER)		JLEIC Electro	on Ring	JLEIC p-Ring
	E (GeV)	3.1	3	5	10	100
	$I_p(\mathbf{A})$	113	59.0	62.35	50.6	15.6
	$\eta (10^{-3})$	1.31	1.09	1.09	1.09	6.22
Tationated a Dina	$\sigma_{\delta} (10^{-4})$	8.0	2.78	4.55	9.28	3.0
mpedance	$\left Z_{\parallel}/n\right ^{\text{th}}[\Omega]$	0.145	0.027	0.125	1.16	22.5
$Z_{\parallel}/n^{\text{Ring}} \approx 0.1 \Omega$		Stable	Unstable	 Marginally Stable 	Stable	Stable

Mitigation Methods

Alternative beamline configurations at low energies

Single Bunch Instability: Transverse Mode Coupling Instability

• Synchrobetatron coupling via transverse wakefield causes frequency shifts for coherent modes

• Observation

• Feature: fatal beam loss

(brick-wall instability)

Single Bunch Instability: Transverse Mode Coupling Instability

• Transverse Single-Bunch Instability Threshold

$$\left|Z_{\perp}(n)\right|_{\text{eff,th}} \approx \frac{16\sqrt{2}\pi}{3} \frac{(E/e)v_s}{\langle \beta_{\perp} \rangle I_{peak}}$$

(should include bunch lengthening effects)

		PEP-II (LER)		JLEIC Electror	Ring	JLEIC p-Ring
	E (GeV)	3.1	3	5	10	100
	$I_p(\mathbf{A})$	113	59.0	62.35	50.6	15.6
	V_{s} (10 ⁻²)	3.7	0.88	1.46	2.51	5.3
	\left	20	13	13	13	64
	$\left Z_{\perp}\right ^{\text{th}}$ [M Ω /m] 1.2	0.81	2.25	9.0	63
achine:	$M\Omega/m$			All Stable		Stable

More serious effects could take place during the bunch formation process

Coupled Bunch Instability

This instability happens when single bunch coherent motion gets coupled among bunches when there is long range wakefield.

Single bunch modes in longitudinal phase space

Coupled Bunch Modes

Growth Rate Estimation

• Zotter's formula Growth Rate: $\tau_{\mu,a}^{-1} = \text{Im}(\Delta \omega_{\mu,a})$

(assumes even bunch fill pattern)

Longitudinal Coupled Bunch Instability (LCBI)

Frequency shift:

t:
$$\Delta \omega_{\mu,a}^{\parallel} = i \frac{a}{a+1} \frac{q_i I_b \omega_0^2 \eta}{3(L/2\pi R)^3 2\pi \beta^2 (E_T/e) \omega_s} \left[\frac{Z_{\parallel}}{n} \right]_{\text{eff}}^{\mu,a}$$

Effective impedance:

$$\left[\frac{Z_{\parallel}}{n}\right]_{\text{eff}}^{\mu,a} = \sum_{p=-\infty}^{\infty} \frac{Z_{\parallel}(\omega_p'')}{\left(\omega_p''/\omega_0\right)} \frac{h_a(\omega_p'')}{S_a(\omega_p'')} , \quad \text{for} \quad \omega_p'' = pk_b + \mu + av_s$$

Transverse Coupled Bunch Instability (TCBI)

Frequency shift:

$$\Delta \omega_{\mu,a}^{\perp} = -i \frac{1}{a+1} \frac{q_i I_b \beta c^2}{2\omega_{\beta} (E_T / e) L} [Z_{\perp}]_{\text{eff}}^{\mu,a}$$

Effective impedance:

$$\left[Z_{\perp}\right]_{\text{eff}}^{\mu,a} = \sum_{p=-\infty}^{\infty} Z_{\perp}(\omega_{p}^{\perp}) \frac{h_{a}(\omega_{p}^{\perp} - \omega_{\xi})}{S_{a}(\omega_{p}^{\perp} - \omega_{\xi})}, \quad \text{for} \quad \omega_{p}^{\perp} = pk_{b} + \mu + v_{\perp} + av_{s}$$

Fall 2018 EIC Accelerator Collaboration Meeting

Effective Impedance

Longitudinal Coupled Bunch Instability

	JLEIC Elec	ctron-ring		JLEIC	p-ring
E GeV]	3	5	10	E [GeV]	100
₌₁ [ms]	2.9	4.0	72.8	$\tau_{a=1}$ [ms]	30.7
a=2 [ms]	31.3	43.5	466	au [ms]	6.2
$ au_{E}$ [ms]	187.4	40.5	5.1		
	0.40	2.02	47.07	V_{RF} [MV]	42.6
V_{RF} [MV]	0.40	2.02	17.87	Cavity	27
Cavity Number	1	2	15	Number	34

- Need feedback
 to damp longitudinal
 quadrupole mode
 CBI
 - Need to consider growth rate for a non-parabolic bunch

- Here the growth times are calculated using ZAP for Z^{RF} +Z^{RW} (assuming even bunch filling).
- Stability is assessed by comparing the growth time with the damping time (1ms) of state-of-art fast feedback system.
- The combined effects of HOM from both RF and crab will be studied later

Transverse Coupled-Bunch Instability

JLEIC Electron-ring

E [GeV]	3	5	10	
$ au_{a=0}$ [ms]	1.6	2.7	64	due to
$ au_{a=1}$ [ms]	12.8	19.6	39.8	resistive wall impedance (Cu)
$ au_y$ [ms]	375	81	10.1	Cannot
V_{RF} [MV]	0.40	2.02	17.87	by HOM dam
Cavity Number	1	2	15	

(assume ξ =1, Δv_{β} =3e-04)

JLEIC p-ring

E [GeV]	100
$\tau_{a=0}$ [ms]	24.4
$\tau_{a=1}$ [ms]	805
$ au_{y}$ [min]	>30
V_{RF} [MV]	42.6
Cavity Number	34

(assume
$$\xi$$
=1, Δv_{β} =3e-04)

by HOM damping

Two-Stream Instability: Electron Cloud in the JLEIC Ion Ring

- Electron Cloud Build-up Behaviors
 - Long ion bunch with low rep rate (in conventional ion ring)

• Short ion bunch with fast rep rate (in JLEIC)

Short-bunches:

e-cloud build up rapidly and saturate at an equilibrium density

Electron Cloud Build-up in the JLEIC Ion Ring

• Electron Cloud Build up (K. Deitrick, et al., LINAC2018)

Table 3: Simulation results for different magnetic elements.

Element	λ_e	$ ho_e$	Δv_x	Δv_y
	(nC/m)	(m^{-3})	(10^{-3})	(10^{-3})
Drift	1.09	1.36×10^{12}	1.06	1.43
Dipole	1.23	1.53×10^{12}	1.20	1.62
Quadrupole	2.40	2.99×10^{12}	2.34	3.16
Sextupole	3.11	3.87×10^{12}	3.03	4.10

Fall 2018 EIC Accelerator Collaboration Meeting

 $\lambda \, (nC/m)$

Single-bunch head-tail instability from e-cloud effects

From two-particle model, the instability threshold for the e-cloud density is

- Other e-cloud effects
 - e-cloud induced coupled-bunch instability is a concern (as observed in PEPII-LER)
 - The behavior of e-cloud build-up varies during the ion bunch formation process
 - Even without coherent instability from e-cloud effect, e-cloud could cause incoherent effect of emittance and bunch halo formation, causing heat load and beam lifetime problem, and background at IR
 - Require comprehensive numerical modeling

- Surface treatment
 - -Scrubbing (constant bombardment by electrons reduces SEY)
 - LHC 25ns bunch spacing for scrubbing run
 - -Inner surface of entire SNS ring is coated with TiN (SEY reduce by 0.5)
- Solenoid confinement of ecloud (~30 Guass)

-ecloud confined near wall surface-Applied to field-free region

- Clearing electrodes
 - -Alter ecloud pattern
- Better bunch pattern
- Better vacuum
- Modify chamber geometry (grooves)
- Chromaticity
 - -Helps to reduce head-tail instability
- Fast feedback system
 - In CESRTA, even after feedback to remove coherent motion, fast emittance growth exists due to incoherent effects.

Two-Stream Instability: Fast Beam-Ion Instability in the JLEIC e-Ring

 Scattering of the electron beam with the residual gas (H₂, H₂O, CO) in vacuum chamber could cause ionization of the gas molecules

Ions are generated by the head of the bunch and keep accumulating until they are cleared by the bunch train gap

The ions slices will be dipole kicked by the previous electron s slices and act back on the dipole motion of the trailing electron slices, serving as a transverse wakefield similar to the RF HOM wakes

Two-Stream Instability: Fast Beam-Ion Instability in the JLEIC e-Ring

• Fast-ion Instability could cause coupled transverse motion of the electron bunches

$$y_{b}(t) \propto (t/\tau_{g})^{-1/4} e^{\sqrt{t/\tau_{g}}}$$
, with $\tau_{g}^{-1}[s^{-1}] = 5p[\text{Torr}] \frac{N_{b}^{3/2} n_{b}^{2} r_{e} r_{p}^{1/2} L_{sep}^{1/2} c}{\gamma \sigma_{y}^{3/2} (\sigma_{x} + \sigma_{y})^{3/2} A^{1/2} \omega_{\beta}}$

Assumption:

- Force between ion and electron beam is linear to their dipole offsets
- Constant ion frequency for all ion oscillations
- For realistic beam, Landau damping is considered as a result of ion oscillation frequency spread due to bunch size variation

$$y_b(t) \propto e^{t/\tau_e}$$
, with $\tau_e^{-1} \approx \tau_g^{-1} \frac{C}{4\sqrt{2\pi}L_{sep}n_ba_{bt}f_i}$

Fast Beam-Ion Instability in the JLEIC e-Ring

Growth time of FBII for the JLEIC e-Ring E_[GeV] 10 3 5 $\tau_{a}[\mu s]$ 0.01 0.11 13.9 τ [ms] 0.02 0.1 3.2 Comparable 10s or 100 times to PFP-II HFR case faster

- Possible mitigation methods:
 - Use clearing electrodes---(contribute to the broadband impedance)
 - Use chromaticity to damp FBII
 - Use multiple bunch trains to reduce the growth amplitude
- Comprehensive numerical modeling of FBII and its mitigation will be performed

PEPII Observation

- Originally envisioned gap: 10% (about 120 buckets)
- In real operation, abort-kicker gap: 18 buckets (about 100ns)
- With 16 bucket gap, instability takes place---unstable when colliding, and stable otherwise

The previously concerned effect could be shifted due to the combined action of the transverse bunch-by-bunch feedback and the Landau damping from the beam-beam interaction

Possible fast ion instability

Figure 7: Transverse spectra of the HER with 16-bucket gap (34 ns). Top trace (yellow) is horizontal; bottom trace (blue), vertical motion. The frequency range is from 20 kHz to 5 MHz and the vertical scale is 10 dB/div in both spectra.

(Wienands, EPAC08)

Challenges on Modeling and Feedback System Needs

- Topics related to bunch train gap and bunch spacing
 - Coupled Beam-beam dipole instability in gear change scheme
 - Multiple bunch train for mitigation of fast ion instability
 - -Bunch train pattern for mitigation of electron cloud
 - Injection and abortion gap

How the instability would look like, and what kind of feedback system is needed?

- Multi-physics effects and modeling challenges
 - Beam-beam tune spread induced Landau damping
 - Coupled bunch instability from both RF and crab cavities
 - Ion effect for the e-beam and electron cloud for ion beam
 - -Feedback

Summary and Future Plan

		Electron		Proton
E [GeV]	3	5	10	100
Single bunch longitudinal instability				
Single bunch transverse instability				
Coupled bunch longitudinal instability		Require fast bur	estate-of-art hch-by-bunch	
Coupled bunch transverse instability		feedback system		
Electron cloud				OK for TMCI Question for CBI
lon effects				

October 29 – November 1, 2018

Future Plan

- Continue with impedance studies
- Comprehensive modeling of various effects
 - -Longitudinal microwave instability, bunch lengthening, etc
 - -Instability studies for bunch formation process
 - Coupled bunch instability from combined effects of RF, crab cavity, electron cloud, ion effect, and interplay with single bunch distribution
 - -FBII and beam-beam tune spread
- Mitigation schemes
 - -longitudinal single bunch instability at low e-beam energies
 - -FBII
- Stability assessment for the whole bunch formation process
- Collective Effects in the Electron-Cooler

Thank you!

