eRHIC polarized electron source and pre-Injector

Erdong Wang Collider accelerator department eRHIC R&D Brookhaven National Laboratory

Electron Ion Collider – eRHIC

EIC Collaboration meeting 2018

Outline

- Polarized electron source and pre-injector requirements
- eRHIC polarized DC electron gun concepts
- Pre-injector concepts
- Spin considerations
- Laser, RF and Diagnostics
- R&D activates
- Summary

eRHIC pre-injector specifications

eRHIC pre-injector parameters

	Nominal: High luminosity with cooling	Moderate luminosity without cooling	
Bunch charge [nC]	5	10	
RMS Bunch length [ps]	6	6	
RMS Emittance [mm-mrad]	20	55	
Frequency [Hz]	1		
Energy [MeV]	400		
Polarization [%]	80%-85%		

Overview of polarized electron DC guns

						Repetition	
Laboratory	Photocathode	Polarization	Voltage	Bunch charge	I_pk	Frequency	l_avg
JLab[1]	GaAs-GaAsP	85%	100, 200kV	2 or 2.7pC	67~53mA	1.5 GHz	1~4mA
SLC[2]	GaAs-GaAsP	86%	120kV	16nC max	5 A	120 Hz	2uA
	AlGaAs/InAlGaA						
MAMI[3]	S	85%	100kV	0.02pC		2.45 GHz	50 uA
Bonn-ELSA[4]	AlGaAs/InGaAs	80%	50kV	100nC	100mA	50 Hz	5 uA
MIT-BATES[5]	GaAsP	50-80%	60kV	250nC	12mA	600 Hz	20 or 200uA
Nagoya[6]	GaAs-GaAsP	92%	200kV	3.2 nC	3.2 A	20 Hz	50 uA
NIKHEF[7]	InGaAsP	80%	100kV	2 nC	2 mA	10 Hz	0.04uA
BNL	GaAs-GaAsP	85%	350kV	10 nC	5 A	1 Hz	10 nA

- 16 nC was achieved by SLC DC gun. It is beyond our nominal injector design.
- Can we make it better?
- Minimize beam loss
- Simplify maintenance

In operation Shut down In design

Superlattice GaAs photocathode

- Recent results from SVT/JLab using DBR super lattice GaAsP photocathode.
- QE is greater than 5%.
- Achieved 86% polarization at the peak.

Existing Gun concepts for eRHIC injector

SLC PES 120 kV gun

- First load-locked gun used at an accelerator
- High bunch charge, low avg. current, very long operating lifetime 。
- 4 days to replace photocathode. No separate load lock...

JLab 350 kV inverted gun

- Inverted shape has less out gassing surface and eliminated field emission to ceramic
- High average current, long operating lifetime.
- Separate load-lock for cathode replacement.
- 10 ⁻¹² torr scale vacuum

Comparison of guns

	SLC	Inverted gun (JLab)	Inverted gun in fabrication (BNL)
Voltage [kV]	120	350	350
Gradient [MV/m]	1.8	3.4	4.2
Cathode size [cm ²]	3	1.13	4.98
Bunch charge [nC]	16	0.003	10
Average current [uA]	5	4000	To be measured
Charge lifetime[C]	<1	80	To be measured
In-situ Cs evap.	Υ	Ν	Ν
Biasable Anode	Ν	Y	Y

8

R&D Gun and cathode preparation

Cathode preparation system

HV DC Gun

The final gun will be similar to the R&D gun, except

- Optimized gun chamber
- Pumps locations and sizes
- Optimized Pierce shape (similar to SLC gun) Larger cathode

Gun electrode

400 MeV pre-injector

SLC linac
12 nC
200 MeV

NSLS II linac
500 pC
200 MeV

Pre-injector Linac frequency choice

Frequency	RF	Aperture	Solenoid	Beam quality	In operation	Cost
563 MHz	SRF	Large	Compensated	Good	NA	High
1.3 GHz	NRF	Moderate	Compensated	Moderate	ANL	Moderate
2.856 GHz	NRF	Small	Continuous	Acceptable	SLAC, BNL	Low

Considering the technical maturity and lower cost, 2.856 GHz Linac is our choice.

11

400 MeV beam line set up

Mott polarimeter

Both bunch charge 5n C and 10 nC cases have been simulated by Parmela 3.38. → meets all the requirements.

12

5nC: High luminosity with cooling

30

Electron Ion Collider – eRHIC

13

10 nC : Moderate luminosity

14

Spin considerations in pre-injector

	Energy Range	Energy acceptance	Realizable
Dipole+solenoid	>100 MeV	Small	SLC
Wien filter	< 400 KeV	Large	Jlab, Mainz(small charge and small energy)

Wien filter

Three-segment Wien filter has been studied to rotate electron spin by 90°

	Parameter	Value		
	Bunch charge	10 nC		
	Energy	350 KeV		
	L	0.5 m		
	E _x	0.98 MV/m		
	B _y	0.00407 T		
	Electrode gap	5 cm		
	0.005 0.004 0.003 0.002 0.001 0.001 0.5 1 1.5	X • Y • • • • • • • • • • • • • • • • •		
	2 p 0.02 0.015 0.005 0.005 0.005 0.05 1.5	osition[m]		
16	Z p	osition[m]		

Mott polarimeter

- High voltage Mott polarimeter placed at gun diagnostic beamline where beam energy is 300-350 keV.
- Can be simplified if using Wien filter to rotate the spin.

Parameter name	value		
Beam energy	300-350 keV		
Beam bend degree by spin rotator	143°		
Voltage of spin rotator	244.5 d/R kV		
Scattering degree,	136°		
Detector count rate	1.69e3 Hz/(nA.um)		
Corresponding time for $P = 0.1\%$	1.36 s		

Electron Ion Collider – eRHIC

17

High pulse energy hybrid Laser

Linac cavities

	114 MHz	571 MHz	2.856 GHz	2.856 GHz	
Rep. Freq	1Hz				
Function		Booster			
Shape	Capacitor loaded	Re-entrance	Traveling wave	Traveling wave	
Gap voltage	500 kV	600 kV/500 kV	15 MV	50 MV	
Duty factor	0.02%				
Peak power	52 kW	35 kW			

Potential R&D topics

- Cathode lifetime modeling and experiments
- New high polarization cathode and related simulation
- Large cathode gun experiments
- Extremely high vacuum studies
- Beam halo induced beam loss, Beam dynamics studies

20

From EIC Collaboration meeting 2017

Lifetime study on Cs₂Te(CsO) coated GaAs

10

QE@532nm [%]

0.1

0.002

GaAs

0.007

A study of an electron affinity of cesium telluride thin film

H Sugiyama¹, K Ogawa², J Azuma², K Takahashi², M Kamada², T Nishitani³, M Tabuchi⁴, T Motoki⁶, K Takashima⁵, A Era⁵ and Y Takeda⁶

¹Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 Japan.

6th International Particle Accelerator Conference ISBN: 978-3-95450-168-7 IPAC2015, Richmond, VA, USA JACoW Publishing doi:10.18429/JACoW-IPAC2015-TUPWA062

GaAs PHOTOCATHODE ACTIVATION WITH CsTe THIN FILM

Masao Kuriki^{#1}, Yuji Seimiya¹², Kazuhide Uchida^{#3}, HU/AdSM, Higashi-Hiroshima, Japan Shigeru Kashiwagi, Tohoku University, Sendai, Japan

Rugged spin-polarized electron sources based on negative electron affinity GaAs photocathode with robust Cs₂Te coating

Jai Kwan Bae, Luca Cultrera, Philip DiGiacomo, and Ivan Bazarov

Citation: Appl. Phys. Lett. 112, 154101 (2018); doi: 10.1063/1.5026701

540 °C heat treatment Roughness:1.8-3.9 nm

Extracted Charge [C] Trying GaAs/GaAsP and Csl coating now.

0.017

x6

2e-11 torr

0.012

7e-11 torr

CsOCsTeO

0.027

CsO

0.022

CsTeO

Te source in Saes dispenser

21

O. Rahman, J. Biswas, M. Gaowei, W. Liu, E. Wang

Extend the lifetime by kicking electrons

Lifetime will be at least doubled with off-center anode scheme.
Emittance increases only 20% compare to centered laser/anode.

22

O. Rahman, E.Wang, J. Skaritka, J. Biswas Paper in preparation

MC simulation of heterojunction GaAs cathode

- Simulated photoemission spectrum response, matchs to experimental results well.
- Considered the heterojuction between GaAs/AlGaAs, and surface barrier.
- Once consider the spin dynamics, could simulate other spin electronics.

W. Liu M. Poelker, C. Sinclair, E. Wang Paper in preparation

Summary

eRHIC source design has no risks:

Dr. Charles Sinclair: "If the ring-ring eRHIC parameters are really 10 nC and 1 Hz, then I think you will have no problem at all. Several laboratories have demonstrated **performances well above this level**".

- The eRHIC polarized electron source needs to generate high charge (10nC) and high polarization of the electron beam. Both SLC PES gun and JLab inverted guns are being considered. 12.5 nC bunch charge has been demonstrated from a DC gun using SL-GaAs photocathode.
- 400 MeV pre-injector has been simulated. Meets the requirements.
- All electron spin requirements have been integrated into pre-injector design.
- The gun R&D activates are in progress.

Thank you for your attention !

Back up Del Del Det Polarized **Electron Source Coherent Electron** Injector Linac Cooler 1.0C eRHIC Dol Detector II Detector I Let. løns Storage Ring Electrons **RCS** Injector

Retarding field Mott polarimeter

Electron transportation-scattering angle

- For isotropic scattering processes: $\cos \theta = 1 2r$
- For anisotropic scattering processes: $\cos \theta = \frac{(1+\xi) - (1+2\xi)^r}{\xi}, \xi = \frac{2\sqrt{\gamma_{E_k}\gamma_{E_{k'}}}}{\left(\sqrt{\gamma_{E_k}} - \sqrt{\gamma_{E_{k'}}}\right)^2} \quad (POP)$ $\cos \theta = 1 - \frac{2r}{1+b(1-r)} \quad (Coulomb)$

C. Jacoboni and L. Reggiani, Rev. Mod. Phys. **55**, 645 (1983) D. Vasileska and S.M. Goodnick, https://nanohub.org/resources/9109 Electron Ion Collider – eRHIC

Electron transportation-energy flow

- Electrons obtain energy from photon
- Electrons exchange energy with holes and crystal lattice
- Electron reach a steady-state distribution after a series of scattering

Polarized gun R&D

The polarized gun R&D goal:

- High average current (6~50 mA), high bunch charge (5.3 nC) large cathode inverted gun for L-R eRHIC source.
- High bunch charge (50 nC) for R-R eRHIC source.

Sub-R&D items:

- Achieve and measure XHV
- High power laser
- Ion back bombardment
- Surface charge limit measurement
- Lifetime as the function of charge
- Beam halo reduction studies
- Cathode cooling

BNL 1ST inverted gun in fabrication

Vacuum

- Cathode system 10⁻¹² torr
- Gun 10⁻¹² torr
- Beam line near the gun low 10⁻¹¹ torr

31

Electron Ion Collider – eRHIC

• Linac 10⁻¹¹ torr

SIP+NEG

eSource Lab in CAD

- Necessary to build a polarized electron source onsite.
- Most of the floor space is dedicated for the ATF-II project. Recently it
 was determined the second experimental hall of the ATF-II project will
 not be constructed for at least the next 5 years. CAD management has
 agreed to lend this space to be used as the polarized source laboratory.
- The Electron Source R&D facility will be located in the same building as other important facilities that will support it's efforts.

32

- Two class 100 particle free clean rooms
- Large In-vacuum bake out oven
- Deionized water source and large high pressure rinsing facilities.
- > 2K system and Cryogenic refrigerator
- ➤ Technical work force
- Large overhead crane

eSource Lab layout

