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Outline of the talk

Physics of the microbunched electron cooling (MBEC)

1D theory of longitudinal MBEC without amplification, comparison
with simulations

Longitudinal cooling with one and two sections of amplification

Transverse cooling of beams

Summary

Our approach is to develop simplified models of the MBEC that allow to
quickly estimate an optimized cooling rate and its scaling with the beam
parameters. At a later stage of this study we plan to address (by
combination of analysis and computer simulations) other effects that are
missing in these simplified models. The analytical models will guide us in
the developing of the codes.
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Cooling options for EIC
Traditional stochastic cooling is two slow for EIC.

Conventional electron cooling (adopted for JLEIC)

Coherent electron cooling (CeC) with an FEL amplifier [Proposed in
Refs.1.]

An FEL is a narrow-band amplifier and the gain is limited by the saturation
effects.

Microbunched coherent electron cooling (MBEC). Proposed in Ref.2.

Optical stochastic cooling (see V. Lebedev’s presentation).

1
Derbenev, AIP Conf. Proc. 253, 103 (1992); Litvinenko, Derbenev. PRL, 102, 114801 (2009).

2
D. Ratner, PRL, 111, 084802 (2013).
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CeC (from V. Litvinenko)



Microbunched electron cooling (MBEC)
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In microbunched electron cooling, electrons of the cooler beam with
γe = γh = γ first interact with the hadron beam in the modulator.

The energy perturbations in the electron beam due to the hadrons are then

converted to density modulation in the chicane R
(e)
56 .

The longitudinal electric field of these density perturbations - typically after
amplification in a separate plasma stage - acts back on hadrons in the
kicker.

High-energy hadrons passing through R
(h)
56 move ahead and get a negative

kick, while low-energy hadrons move back and get a positive kick.

Over many passages, this decreases the energy spread of the hadron beam.
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Representative set of parameters for eRHIC MBEC

In numerical estimates we assume the following set of parameters for the
hadron and electron cooler beams:

Proton energy [GeV] 275

Proton relative energy spread, σηh 4.6× 10−4

Electron energy [MeV] 150

Electron relative energy spread, σηe 1× 10−4

Electron beam charge [nC] 1
Electron beam peak current [A] 30
Repetition rate [MHz] 112
RMS beam size in mod. and kicker, Σ, [mm] 0.7
Lm, Lk [m] 40

The electron bunch length, σze ≈ 4 mm, is much shorter than the proton
bunch length, σze . σzh = 5 cm.

The cooler-beam current is ∼ 100 mA.
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The model

A hadron in the modulator interacts
with the nearby electrons and changes
their energy.

Each hadron and electron are treated as infinitely
thin slices of charge Ze or −e respectively with a
Gaussian transversed charge distribution over the
surface of the slice, ∼ (Ze/2πΣ2)e−r2/2Σ2 (this is
justifiable if hadrons and electron execute several
betatron oscillations during interaction). Here Σ is
the rms transverse size of the beam.
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1D Model of hadron-electron interaction
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The interaction force of two slices

Fz(z) = −
Ze2

Σ2
Φ
(zγ
Σ

)
The interaction force extends over
the distance ∆zint ∼ Σ/γ ≈ 2.4µm.
The number of electrons within
∆zint is Ne ∼ 1.5× 106.

We neglect the longitudinal shift of the particles on the length Lm, Lk . The
electrons within the distance ∼ ∆zint change their energy by δE = Fz(z)Lm,

δηe =
δE

γmec2
∼

Ze2Lm
Σ2γmec2

∼ 10−9

(we use the notation η = ∆E/E0). In absolute units δE ∼ 0.15 eV. Electrons are
decelerated ahead of the hadron and accelerated behind the it.
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Passage through the chicanes
Due to the interaction with the hadron,
electrons ahead of the hadron (with smaller
energy ) will shift less, and electrons behind
the hadron (with higher energy) shift more

by δz ∼ R
(e)
56 δηe . The optimal value

R
(e)
56 ∼ ∆zint/σηe (larger R

(e)
56 smears out

perturbations on the scale ∆zint).

This will cause a density perturbation

δne ∼
δz

∆zint
ne ∼

δηe

σηe
ne ∼ 10−5ne

where ne is the number of electrons (slices) per unit length. For our parameters
the excess of electrons created by one hadron is δne∆zint ∼ 1.5.

8/27



The kicker
The excess of electrons creates the longitudinal electric field

Ez ∼
e

Σ2
δne∆zint ∼ e

δηe

σηe

ne
Σγ

and this field changes the hadron energy by ∆E = ZeEzLk in the kicker.

��>��

��<��

-� -� -� � � � �

-�����

-�����

�����

�����

�����

� (μ�)

Δ
�
(�
)

Hadrons are shifted by R
(h)
56 ηh with the

higher energy than the nominal one
slipping ahead and the lower energy
lagging behind. The cooling time (in
revolution periods)

Nc ∼
σηh

∆E/Eh

This formula has the right scaling with the beam parameters. More
accurate calculations (see below) give the cooling time ∼ 40 h.
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Theoretical analysis (PRAB 2018)

In this analysis we used the Vlasov equation to track the dynamics of
microscopic 1D fluctuations in the electron and hadron beams during
their interaction and propagation through the system.

Assumptions:

1D model: hadrons and electrons are treated as infinitely thin slices of
charge Ze (−e for electrons) with a Gaussian transverse charge distribution
(round beams).

Perfect overlap of the electron and hadron beams in the modulator and the
kicker.

Particles (slices) do not shift relative to each longitudinally during the
interaction in the modulator and the kicker.

Chicanes shift particles in the longitudinal direction by R56η.

There is a perfect mixing in the hadron beam on the scale ∆zint during one
revolution in the ring.

We calculate the cooling time for the longitudinal energy spread.
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Kinetic equation for Fh
Evolution of the energy distribution function of hadrons Fh(η, t) in the
ring over many passages through the cooling system

∂Fh
∂t

=
1

2tc

∂(ηFh)

∂η
+ D

∂2Fh
∂2η

Multiplying this equation by η2 and integrating it over η we obtain

dσ2ηh
dt

= −
σ2ηh

tc
+ 2D

The cooling time depends on R
(e)
56 and R

(h)
56 . The optimal values are:

R
(e)
56 = 0.6Σ/σηeγ, R

(h)
56 = 0.6Σ/σηhγ, with

N−1
c ≡

( tc
T

)−1

=
0.1

σηhσηe

1

γ3
Ie
IA

rhLmLk
Σ3

Here, IA ≈ 17 kA is the Alfven current and rh = (Ze)2/mhc
2 is the

classical radius for hadrons (≈ 1.5× 10−18 m for protons) and T is the
revolution period.
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Cooling rate

The electron beam overlaps only with a small fraction of the hadron
beam. Over many revolutions, hadrons move longitudinally due to the
synchrotron oscillations. One needs to average the cooling rate over the
length of the electron bunch,

N−1
c =

0.1

σηhσηe

1

γ3
cQe√

2πσzhIA

rhLmLk
Σ3

the cooling time is
Tc ≈ 41 h

The cooling rate increases for smaller Σ, but we cannot focus both
(hadron and electron) beams in the modulator and the kicker. [Currently,
it is assumed that the modulator and the kicker are drifts.]
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Numerical simulations

We used Ne = 104 electron macroparticles and the length of the “electron
bunch” ∆z = 20Σ/γ. The averaging was done over M = 5× 106 runs. The plot
of the simulated cooling times as a function of the dimensionless chicane

strength r = R
(h)
56 σηhγ/Σ = R

(e)
56 σηeγ/Σ.
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Our choice of the simulation
parameters can be interpreted
as if each macroparticle had a
charge of approximately 36e.
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Amplification of microbunching in the electron beam3
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In 1D model, the amplification factor
G (k) is derived theoretically. For the
optimized chicane strength (note the

minus sign in G—this is for R
(e,2)
56 > 0),
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G (k) = −
1

σηe

√
Ie
IAγ

g

(
kΣp

γ

)
where Σp is the beam radius.
We also simulated g solving equations
of motion for electrons in the drift with
account of the Coulomb interactions.
Red dots—the result of simulations.

This is a broadband amplifier. Unfortunately, small k (long period) plasma
oscillations have small plasma frequency.

3
Schneidmiller and Yurkov, PRSTAB 13, 110701 (2010); Dohlus, Schneidmiller and Yurkov, PRSTAB 14 090702 (2011);

Marinelli et al., PRL 110, 264802 (2013).
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Plasma oscillations frequency
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c
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This makes the optimal length of the amplification section longer than
follows from simple estimates.
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MBEC amplification using plasma oscillations4

a)

Lm Ld=λp/4 Lk

R56
(h)

R56
(e,1) R56

(e,2)

Amplification section

h+ h+

e_ e_

In this analysis we assumed round beams in the modulator and the kicker. We
also assumed Σp = 0.14 mm, Σp/Σ = 0.2. Analytic theory predicts for the
amplification factor for the beam current Ie

G ≈ 0.8
1

σηe

√
Ie
γIA

Using Ie ≈ 30 A and eRHIC parameters we obtain G ≈ 20.
We estimate the cooling time

Tc ≈ 2.7 h

4
D. Ratner, PRL, 111, 084802 (2013).
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MBEC amplification using plasma oscillations

Two stages of plasma amplification should be enough for eRHIC.

b)

Lm Ld=λp/4 Ld=λp/4 Lk

R56
(h)

R56
(e,1) R56

(e,2) R56
(e,3)

Ampl. section 1 Ampl. section 2

h+ h+

e_ e_

The optimized cooling time is

Tc ≈ 9 min

This would require the length of the amplification drift section Ld = 84
m. For Ld = 30 m, the cooling time Tc ≈ 23 min.

It is most likely, the noise amplification will play a role at this large values
of the amplification.
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MBEC transverse cooling
Recently, we extended the model by including the transverse motion of the
hadrons (but not the electrons!) as they pass from the modulator to the
kicker.

The hadron-electron interaction, as well as the space charge force of the
electron beam in the plasma section, are still being treated in the 1D limit.

Hadron and electron beams consist of slices with a Gaussian profile which
can have unequal σx and σy with ε = σy/σx an ellipticity parameter. This
changes the interaction force.

We begin our analysis with a system without the amplification.

For numerical estimates, we assume the following set of parameters for the
hadron and electron cooler beams:

Horizontal/vertical proton emittance [nm] 9.2/1.3
Modulator and kicker lengths Lm, Lk [m] 50
(Effective) electron beam current, Ie [A] 2.4

Assuming β ≈ 50 m, we have Σ =
√
εxβ ≈ 680 µm and Σy =

√
εyβ ≈ 250 µm

(so the ellipticity parameter, in the absence of dispersion, is ε0 = Σy/Σ = 0.37).
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Transverse dynamics

For the hadron beam, we only consider betatron motion in the
vertical (y) direction.

For the hadron transport line between the modulator and the kicker,
including the hadron chicane, the four-dimensional transfer matrix is
given by

R =


R33 R34 0 R36

R43 R44 0 R46

R53 R54 1 R56

0 0 0 1

 ,

which is supposed to act on the combined vector y = (y ,Py , z , η).

General expressions exist for the various matrix elements in terms of
the lattice functions (R must also be a symplectic matrix).

We adopt a simplified model in which β1 = β2 = β, α1 = α2 = 0,
D1 = D2 = D and D ′

1 = D ′
2 = 0 (1 and 2 refer to the modulator and

the kicker).
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Transverse dynamics

The matrix elements are R33 = R44 = cosµ, R34 = β sinµ,
R43 = − sinµ/β, R36 = (1 − cosµ)D, R46 = (β/D) sinµ,
R53 = −(D/β) sinµ and R54 = (cosµ− 1)D, where µ is the phase
advance.

Analysis is greatly facilitated by going to the action-angle
coordinates (J, φ) via

y = ηD +
√

2βJ cosφ, Py = ηD ′ −

√
2J

β
(sinφ+ α cosφ).

Inside the modulator and the kicker segments, y and Py are
assumed to be constant.

In the kicker section, due to the interaction with the strongly
microbunched e-beam, the hadron energy variable η also changes,
leading to a corresponding variation in the betatron action J.

This is an essential feature of the emittance cooling mechanism.

Electron motion is still being treated in the 1D limit.
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Cooling analysis

Neglecting diffusion effects, the cooling equations for energy spread
and emittance are

dσηh
dt

= −
σηh

NηcT

and
dε

dt
= −

ε

NεcT
,

where we recall that T is the revolution period.

The scaled cooling times Nηc and Nεc are given by 1/Nηc = A0Iη and
1/Nεc = A0Iε, where

A0 =
4IeLmLk rh

πΣ3γ3IAσηeσηh

is a dimensionless prefactor (for the eRHIC parameters,
A0 ≈ 2× 10−9). We derived analytical expressions for the cooling
integrals Iη and Iε.
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Optimization of the cooling rate

How do we optimize the emittance cooling rate?

ε =
√
Σ2
y + σ

2
ηD

2/Σ is the ellipticity parameter (or aspect ratio)

including the effect of dispersion.

Zero cooling for the energy spread!

Then, we need to maximize the modified cooling integral Iε.
Optimum Iε = 0.103.

In terms of real parameters, this translates to:

Optimum dispersion D ≈ 0.87 m.

Phase advance µ ≈ 0.24.

Chicane strengths: Rh
56 = 3.8 mm and Re

56 = 1.1 cm.
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Cooling rates as a function of the dispersion
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We scan the dispersion around
the optimum value while
keeping everything else
constant.

A minimum is observed for the
emittance cooling time (at
D = Dopt = 0.87 m).

Minimum cooling time ∼ 18 h.

23/27



Comparison with simulation

To benchmark our theory, we compare analytical theory with 1D
simulation.
The actual machine parameters would lead to a very high number of
simulation macroparticles (∼ 106).
Instead, we use an alternative parameter set for which
A0 = 6× 10−4. This allows us to use fewer macroparticles (∼ 104 for
electrons and ∼ 103 for hadrons).
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c
(theory)
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We scan the dimentionless
electron chicane strength
qe .

Good agreement is observed
between theory and
simulation.

A deviation of a few percent
can probably be attributed
to diffusion effects.
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MBEC with two amplification stages

b)

Lm Ld=λp/4 Ld=λp/4 Lk

R56
(h)

R56
(e,1) R56

(e,2) R56
(e,3)

Ampl. section 1 Ampl. section 2

h+ h+

e_ e_

The cooling time can be substantially reduced by adding cascaded plasma
stages after the first electron chicane. Here, we consider the case of two stages.

Squeeze the electron beam to a size Σp ≈ 135µm.

The optimized integral Iε is now 0.032 (instead of 0.103). At the same
time, the prefactor A0 is boosted by a factor of 2Ie/(γIAσ

2
e) ≈ 96.

The optimum cooling time (∼ (A0Iε)
−1) is now about 0.6 h (30 times

lower than without plasma amplification).

For the optimized machine parameters, we now have D ≈ 1 m, µ ≈ 0.45,

Rh
56 = 8.2 mm, R

(e,1)
56 = R

(e,2)
56 = R

(e,3)
56 = 2.2 cm.
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Sketch of MBEC cooler for eRHIC from pre-CDR
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Summary
We have developed a theoretical model that describes the MBEC
process for both the energy spread and the transverse emittance of
the hadron beam. Amplification is provided by two sections

consisting of
1

4
λp drift+chicane.

Our derivation is based on a one-dimensional (1D) Vlasov technique
that tracks the evolution of the beam fluctuations through the
MBEC setup.
Our analysis is benchmarked via comparison with 1D simulation and
simple formulas are obtained for the cooling times, allowing for fast
optimization studies.
From a practical point of view, cooling times below 1h appear to be
feasible for the eRHIC parameters (both for energy spread and
emittance) by making use of two cascaded plasma amplification
stages.

Future plans

Extend the analytical theory to the three-dimensional (3D) regime.
Develop a 3D simulation tool for MBEC.
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