Straight Merger Test at CBET \mathcal{K}

Kirsten Deitrick (JLab)
Collaborators:
Andrew Hutton (JLab)
Sarah Overstreet (ODU)
Adam Bartnik, Colwyn Gulliford Karl Smolenski,
Georg Hoffstaetter CLASSE

EIC Accelerator Collaboration Meeting

Outline

- Straight Merger
- Motivation
-Concept
- Experimental Layout
-Beam parameters and measurement cases
Includes material from previous seminars given by Virginia group
- Evaluations of Measurements and Simulations
-Operating point
- As a function of phase
-Banana effect

Straight Merger: Motivation

- Traditional mergers involve dipoles, exploiting energy difference between the injected and recirculated beams
-Negatively affects rotational symmetry and quality of injected beam
- Magnetized beams are used for electron beam cooling in JLEIC
-Sensitive to non-rotationally symmetric transport, especially at low energy and high charge
- Using traditional mergers, quality of magnetized beams significantly decreases
- For best beam quality, the goal is to merge the beams while not disturbing the injected beam \rightarrow straight merger concept

Straight Merger: Concept

Waveforms

- Without DC field, injected and recirculated beams see equal and opposite deflecting kick
- With DC field
- Injected beam sees no deflection
- Recirculated beam experiences twice the deflection from the RF separator alone
-This is seen on next slide

Waveforms

Straight Merger: Concept

- To first order: injected beam has no deflection
- To higher order: beam has finite length, only center has no deflection \rightarrow front and back are deflected
-We call this the "banana effect"
- Banana effect
- Inevitable energy slew along the bunch length
-Smaller for shorter bunch lengths and lower RF frequencies
-Effectively removed by adding third harmonic to separator cavity

Experimental Test

- Compare simulations and measurements of beam dynamics through RF separator and DC dipole magnetic field
-DC dipole magnetic field provided by pair of coils
- Separator and coils referred to as "the assembly"
- Georg Hoffstaetter offered Virginia group beam time at CBETA
- CBETA is an excellent site for the experiment:
-Pre-existing simulation deck of accelerator
-RF separator already installed on beamline
-RF separator is 1.3 GHz , high frequency to observe banana effect

CBETA

CBETA

August 2017

Experimental Layout

Experimental Layout

CAD model of the cavity and coil by Joe Gubeli (JLab)

Beam Parameters and Measurement Cases

- 2.4 MeV electron beam

Undisturbed: assembly is off Kicked: assembly is on

- 113 kV deflecting voltage
-Conflicting calibrations
- C1 (beam spot)
- C2 (longitudinal phase space)
- 2 horizontal slits on C1 screen (spot beamlet)
- 1 vertical slit on C2 screen (longitudinal beamlet)

Evaluations of Measurements and Simulations

- Operating point
- Comparison of undisturbed and kicked bunches
- As a function of phase
- Vertical rms size as a function of phase (with respect to maximum deflection)
- Coil current adjusted for no net deflection of beam
- Banana effect
- Comparison of undisturbed and kicked beamlets
- On plots:
-xy area is consistent for all viewscreens (simulated or measured) that share a slide
-Density is scaled for each plot, but is NOT the same for all plots that share a slide
-Unless otherwise specified, measurements are shown with no applied threshold
- Sometimes appears that way due to background subtraction immediately before measurement

Operating Point: C1 (Beam Spot)

Both simulations and measurements show minimal changed between undisturbed and kicked bunches

Operating Point: C2 (Longitudinal Phase Space)

Kicked

Measured

Both simulations and measurements show minimal changed between undisturbed and kicked bunches

Simulated

As a Function of Phase: Simulation

Simulated vertical rms size of the beam for C1 (blue) and C2 (red)

As a Function of Phase: C1 (Beam Spot)

Measured $r m s$ vertical size on the beam spot screen plotted as a function of degrees off-crest for different thresholds

Notice how symmetry is broken at larger positive phase

As a Function of Phase: C1 (Beam Spot)

$$
\varphi=-50^{\circ}
$$

$$
\varphi=50^{\circ}
$$

Edge of screen is seen in both plots, but beam is only clipped in positive phase

Consequently, bunch size is reduced for large positive phase

As a Function of Phase: C1 (Beam Spot)

Beam spot measurements plotted with the simulated curve, with no alterations

As a Function of Phase: C1 (Beam Spot)

Simulated

As a Function of Phase: C2 (Longitudinal Phase Space)

Measured $r m s$ vertical size on the longitudinal screen plotted as a function of degrees off-crest for different thresholds

As a Function of Phase: C2 (Longitudinal Phase Space)

Longitudinal measurements plotted with the simulated curve, which has (left) and has not (right) been shifted and scaled for best agreement

As a Function of Phase: C2 (Longitudinal Phase Space)

As a Function of Phase: Slits

Measured $r m s$ vertical size on the longitudinal beamlet (1 vertical slit, left) and spot beamlet (2 horizontal slits, right) plotted as a function of degrees off-crest for different thresholds

Banana Effect: In General

- Operating point for beamlets
-Measurement using horizontal slits to examine increased vertical size because of deflection at front and back of the bunch
-Measurement using vertical slit to examine energy slew and spread across bunch length because of deflection

Banana Effect: Horizontal Slits

- y vs t plots are not density plots
- Simulation of fake beamlet no vertical motion after passing through slits
- Spread of curve in y vs t plot correlates with horizontal distance off-axis

Banana Effect: Horizontal Slits

Banana Effect: Horizontal Slits

- Kicked beamlet does not appear to have a larger vertical size, unless you consider the core section of the beamlet
- Droop seen in kicked spot beamlet is because the off-axis fields of the RF separator and the off-axis fields of the coils do not cancel
-This is a transverse effect
-The banana effect is longitudinal, just seen in the transverse

Banana Effect: Vertical Slits

- Kicked beamlet appears to experience minor energy loss
- Energy along bunch length does not increase
\rightarrow but it does change
- Simulations suggests that energy spread of incoming is bunch is significantly larger than any change from assembly

Conclusion

- Overall, a good agreement between the qualitative behavior of the beam measurements and the simulations
- Deeply appreciate CBETA for the opportunity to perform this experiment
- A good first step towards demonstrating the potential of the straight merger system
- Follow up experiment would require at least one of the following:
- Higher bunch charge
- Higher deflector voltage
- Magnetized beam

With field clamps

Thank you for your attention!

New email: kd324@cornell.edu Or kirsten.deitrick@cornell.edu

As a Function of Phase: C1 (Beam Spot)

Simulated

Measured

