

Nuclear Disarmament Verification via Resonant Phenomena

(and other adventures in nuclear security)

Areg Danagoulian

Outline

- What's the big problem? (Nuclear Arms Reduction Treaties)
- Why template verification and how does it work?
- What is Nuclear Resonance Fluorescence (NRF)?
 - → NRF based verification
- Epithermal neutron physics
 - → epithermal neutron verification

Nuclear Arsenals

2017 Estimated Global Nuclear Warhead Inventories

The world's nuclear-armed states possess a combined total of roughly 15,000 nuclear warheads; more than 90 percent belong to Russia and the United States. Approximately 9,600 warheads are in military service, with the rest awaiting dismantlement.

Sources: Hans M. Kristensen and Robert S. Norris; U.S. Department of State. Updated January 31, 2017.

- Significant Reduction since the Cold War
- ,, Доверяй, но проверяй! " Но как? How? Ինչպե՞ս:

VERIFICATION

- How do treaty partners verify that the other side is dismantling actual warheads and not fakes? <u>They don't</u>.
- Verification: delivery vehicles easier to verify.

- Problems: large leftover of non-deployed warheads
 - theft → nuclear terrorism, nuclear proliferation
- → Authenticate warheads, without revealing secret information

Our Research: physics-based cryptography, template verification

Authenticated template "golden copy" of W88 Picked from a randomly selected ICBM

Candidate copies, W88

- Is $A_0 = A_1 ? \checkmark$ $A_0 = A_2 ? \checkmark$ $A_0 = A_3 ? \checkmark$

- **Challenge**: perform checks while
- protecting secrets
- isotopicaly <u>sensitive</u>
- → need cryptography physical cryptography
- → need resonances!

Analogy: NRF to Optical Spectroscopy

Optical Spectroscopy

Nuclear Spectroscopy

NRF: unique fingerprint of isotopics

Broad-spectrum source → NRF

unique line spectra for U-235, U-238, Pu-239, Pu-240...

$$\sigma_{r,j;\,0\,\mathrm{K}}^{\mathrm{NRF}}(E) = \pi g_r \left(\frac{\hbar c}{E}\right)^2 \frac{\Gamma_{r,0}\Gamma_{r,j}}{(E-E_r)^2 + (\Gamma_r/2)^2}.$$
 $\Gamma \sim \mathrm{meV} \rightarrow \mathrm{thermal\ motion} \rightarrow \mathrm{eV}$

NRF Weapon authentication Concept

Hosts:

- provide the candidate warheads (to be authenticated)
- Foil thickness unknown to the inspectors, but of agreed upon isotopes

Inspectors:

- Detector, electronics (to be verified by hosts)
- Visual access to the foil

Joint:

Template ("golden copy")

NRF Weapon authentication Concept

Shielding

- **Physical Cryptography:**

 - No direct data from the weapon itself $SIGNAL = (Weapon) \otimes (Foil)$
 - Impossible to extract (Weapon)
- Soundness and completeness:
 - Authenticated template A -- acquire S_{NRF}(A)
 - Candidate weapon B -- acquire S_{NRF}(B) and compare

What's a bomb and how does it work?

11

(source: wikipedia)

Simulated 2.1 or 2.5 MeV bremsstrahlung beam

> 1000 core hours for sufficient NRF statistics

Canonical hoax scenarios

R.S. Kemp, A. Danagoulian, R. Macdonald, J.Vavrek, *Physical cryptographic verification of nuclear warheads*, *PNAS* 113 (2016) 31.

NRF experimental setup

- Van de Graaff Accelerator
- 2.5 MeV e-, DC beam
- 20 mA

Proxy Warhead

- 3mm of ²³⁸U
- 0.5mm of ²⁷Al
- 1.5" of plastic
- "MIT Linear Implosion Design"

Experimental setup

 10^{-4}

energy E [MeV]

Hoax to Genuine comparisons

Hoax to Genuine comparisons

- 11σ discrepancy in U lines
- identical counts in Al

Extrapolations: the real bomb

- 5-10 σ in a (1+1)-hour proof-of-concept
- <u>"Black Sea" model</u>:
- 6X rate decrease

$25 \text{ uA} \rightarrow 2.5 \text{ mA beam current}$:

100x rate increase

$3 \rightarrow 30$ HPGe detectors:

10x rate increase

measurement times of minutes

Black Sea Model

IBA TT100 Rhodotron

GammaSphere

Verification with Epithermal Resonant Assay (VERA)

Epithermal Resonant Cryptographic Radiography

- Epithermal neutron resonances in the 1-10 eV
- Neutron Resonance Transmission Assay (NRTA)

Chichester, D. L. & Sterbentz, J. W. Assessing the Feasibility of Using Neutron Resonance Transmission Analysis (NRTA) for Assaying Plutonium in Spent Fuel Assemblies. JNMM XL, 4 (2012).

- Transmitted spectrum = isotopics ⊗ geometry
- cryptographic reciprocal mask

- choose a resonance
- → isotopic image

Fig. 6. Reconstructed projection for ²³⁵U using the SAMMY code

Epithermal Resonant Cryptographic Radiography

- Epithermal neutron resonances in the 1-10 eV
- Transmitted spectrum = isotopics ⊗ geometry.
- cryptographic reciprocal mask

 $A_{recip} = 1/(A_{object} \times const.)$

- ~ flat image: no geom. information
 - spectrum reveals nothing about the pit

Simulations: Geometric hoax resistance

(J. Hecla)

Simulations: WGPu pit vs. a RGPu hoax

- + Different isotopics result in different transmission spectra
- + Only ~100k incident counts necessary for a 5σ detection

Geometric Information Security

- + Compare the transmission image of the pit+reciprocal to that of a flat plate of the same total thickness
- + Images and spectra are identical can't differentiate, thus cannot infer any geometric information → geometric **Zero Knowledge**

Isotopic Information Security

- + Protect the isotopics of the pit.
- + isotopics(pit+reciprocal) ≠ isotopics (pit)
- + MC simulations of three scenarios:
 - 70% 239Pu enriched pit, 98% enriched extension
 - 78% enriched pit and extension
 - 93% pit, 71% extension
 - the transmitted spectra are identical
- → isotopic Zero Knowledge

Jake's MIT undergrad thesis

Jake J. Hecla, Areg Danagoulian, "Nuclear Disarmament Verification via Resonant Phenomena," *Nature Communications* 9, 2041-1723 (2018)

POC Experiments: Rensselaer Polytechnic Institute

- Can we avoid simple imaging? Yes single pixel tomography
 - no need for complicated reciprocals
 - simple detectors
- Experimentally prove the feasibility of the concept
- Proxies for "honest" template pit and "hoax" pit:
 - template: 90% Mo / 10% W (Mo ←→ ²³⁹Pu : W ←→ ²⁴⁰Pu)
 - isotopic hoax different isotopic ratio
 - geometric hoax perform rotations
- Measurements: single pixel detector, 6Li glass, TOF

• Work with PPPL on using smaller, precisely moderated DT sources for ~eV neutron beams.

The Future

- Perform epithermal experiments at to prove the epithermal concept
- Collaborate
 - national labs
 - other countries
 - Russia
- Need technological solutions for treaty verification → more ambitious, far reaching treaties
- How can we, physicists, help solve major societal problems?

The Team

Postdoc:

Dr. Brian Henderson

Students:

PhD

Jimmy

Jayson

Julie

Will

Ethan

S.M.

Ezra

Undergrad

Ben

Alumni:

Jake Hecla

Dr. Buck O'Day

Jill Rahon

Bobby Nelson

Jeremiah Collins