Elastic Electron Scattering

for Proton Charge Radius Determination

Toshimi Suda

Tohoku University Sendai, Japan

for ULQ² (Ultra-Low Q²) Collaboration

Tohoku Univ. : K. Tsukada, Y. Honda, T. Tamae. T. Mutoh, K. Takahashi, K. Nambu, M. Miyabe, A. Tokiyasu, K. Nanba, T. Aoyagi Miyazaki Univ. : Y. Maeda

CPHI @ Yerevan, Sep. 24-28, 2018

Ee = 20 - 60 MeV !!

Short-Lived Exotic Nuclei

CPHI @ Yerevan, Sep. 24-28, 2018

RIKEN RI Beam Factory

CPHI @ Yerevan, Sep. 24-28, 2018

world's highest intensities of exotic beams (2007 \sim)

size and shape of neutro- and proton-rich nuclei

CPHI @ Yerevan, Sep. 24-28, 2018

 $\langle r_c^2 \rangle = \int r^2 \rho_c(r) \, \mathrm{d}\vec{r}$ $\rho_c(\vec{r}) = \sum_n \psi^*(\vec{r})\psi(\vec{r})$

	size	shape
proton	isotope shift	electron scattering
matter	reaction cross section	proton scattering

Electron scattering off short-lived exotic nuclei CPHI @ Yerevan, Sep. 24-28, 2018

Nuclei targeted so far for electron scattering

H.deVries, C. deJager and C. deVries Atomic Data and Nuclear Data Tables 36 (987)495

Short-lived Exotic Nuclei

Production-hard + Short-lived

Elastic electron scattering

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{d}\sigma_{\mathrm{Mott}}}{\mathrm{d}\Omega} |F_c(q)|^2$$
$$F_c(q) = \int \rho_c(\vec{r}) e^{i\vec{q}\vec{r}} d\vec{r}$$
$$\rho_c(\vec{r}) = \sum_p \psi_p^*(\vec{r}) \psi_p(\vec{r})$$

SCRIT (Self-Confining RI ion Target)

L ~ 10^{27} /cm²/s with only ~ 10^{8} target nuclei

Expected low luminosities

Charge density distribution Charge radius

SCRIT (Self-Confining RI Ion Target) : ion trapping

Nucl. Inst. Meth. A532 (2004) 216. Phys. Rev. Lett. 100 (2008) 164801. Pbys. Rev. Lett. 102 (2009) 102501. Phys. Rev. Lett. 118 (2017) 262501. Prog.Part.Nucl.Phys. 96 (2017) 1.

	Ee	N _{beam}	ρ·t	L
Hofstadter's era (1950s)	150 MeV	~ InA (~10º /s)	~10 ¹⁹ /cm ²	~10 ²⁸ /cm ² /s
JLAB	6 GeV	~100µA (~10¹⁴ /s)	~10 ²⁴ /cm2	~10 ³⁸ /cm ² /s
SCRIT	150 - 300 MeV	~200 mA (~10 ¹⁸ /s)	~ 10 ¹⁰ /cm ²	~10 ²⁷ /cm²/s

CPHI @ Yerevan, Sep. 24-28, 2018

the latest "Nuclear Physics News"

Nuclear Physics News

ISSN: 1061-9127 (Print) 1931-7336 (Online) Journal homepage: http://www.tandfonline.com/loi/gnpn20

The SCRIT Electron Scattering Facility at RIKEN: The World's First Electron Femtoscope for Short-Lived Unstable Nuclei

A. Enokizono, T. Ohnishi & K. Tsukada

To cite this article: A. Enokizono, T. Ohnishi & K. Tsukada (2018) The SCRIT Electron Scattering Facility at RIKEN: The World's First Electron Femtoscope for Short-Lived Unstable Nuclei, Nuclear Physics News, 28:2, 18-22, DOI: <u>10.1080/10619127.2018.1427951</u>

To link to this article: https://doi.org/10.1080/10619127.2018.1427951

Proton Charge Radius by Elastic Electron Scattering

Why is the proton radius a hot topics ?

1) the radius is one of the basic properties of the nucleon

2) the radius is strongly correlated to the Rydberg constant

3) possible new physics beyond Standard Model (??)

Lepton Universality (e $\langle - \rangle \mu$) ??

4) the neutron-skin thickness of neutron-rich nuclei => EOS of neutron matter

Charge radius and charge density

CPHI @ Yerevan, Sep. 24-28, 2018

Absolute G_E(Q²) at lower Q² region

CPHI @ Yerevan, Sep. 24-28, 2018

I. Sick, Atoms 2018, 6, 2

CPHI @ Yerevan, Sep. 24-28, 2018

The goal of this project

 $G_E(Q^2)$ measurements at 0.0003 $\leq Q^2 \leq 0.008$ (GeV/c)²

- Absolute cross section measurement with 10⁻³ precision
- **Rosenbluth separated** $G_E(Q^2)$, $G_M(Q^2)$

Exp. @ Tohoku Low-Energy Electron Linac (Ee = 20 - 60 MeV)

ULQ² @ Sendai

ULQ² collaboration (Ultra-Low Q²)

Research Center for Electron-Photon Science, Tohoku University Sep. 24-28, 2018

1.3 GeV Booster Ring tagged photons (~ 1 GeV) meson photoproduction, hypernucleus

60 MeV electron linac

~10 kW electron beam (150 uA) Radioactive Isotope photo-production

e-scattering off proton at ultra-low Q² region

CPHI @ Yerevan, Sep. 24-28, 2018

Goal of our experiment

 $G_E(Q^2)$ measurements in 0.0003 $\leq Q^2 \leq 0.008$ (GeV/c)²

Our experiments

Low-energy electron scattering Absolute cross section measurement Rosenbluth separation ($G_E(Q^2)$, $G_M(Q^2)$)

accelerator, instruments

Tohoku low-energy electron linac + experimental hall

 $20 \le \text{Ee} \le 60 \text{ MeV}$ $30 \le \theta \le 150^{\circ}$ $\Delta p/p \sim 10^{-3}$

new beam line + double-arm spectrometer

Challenges

Absolute cross section $(G_E(Q^2))$ with 10⁻³ accuracy experimental challenges for measurement theoretical challenges for interpretation

Proton charge radius by e-scattering

物理学会シンポジウム 2018.03.22

Challenges

Absolute cross section ($G_F(O^2)$) with 10⁻³ accuracy</sup>

 relative measurement to well-known (established) cross section
Moeller cross section : PRAD@JLAB
large scattering angle coverage for GE/GM separation
¹²CH₂(e,e') cross section ULQ²@Tohoku

Low energy electron detection with high resolution no tracking, frequent spectrometer setting changes ,,,

Ultra Relativistic Limit : m_e -> 0 ??

finite effects : up to a few % depending on kinematics

Coulomb distortion effects not negligible (~ 0.2 % level)

CPHI @ Yerevan, Sep. 24-28, 2018

Electron spectrometer (P = 20 - 60 MeV/c)

CPHI @ Yerevan, Sep. 24-28, 2018

Low energy : Ee = 20 - 60 MeV high-resolution without tracking

"old-fashioned" spectrometer

- 1) elastic e+p scattering at ultra-low Q² region
- 2) $G_E(Q^2)$ at 0.0003 $\leq Q^2 \leq 0.008$ (GeV/c)²
- 3) **G**_E is extracted by Rosenbluth separation
- 4) Absolute cross section measurement

relative to ${}^{12}C(e,e){}^{12}C$: sys. err. $\sim 3x10{}^{-3}$

- 5) Ee = 20 60 MeV, θ = 30 150°
- 6) the new beam line, and spectrometer are under construction
- 7) the experiments will start in 2019