Exploring the Pion Structure in Minkowski Space

Tobias Frederico Instituto Tecnológico de Aeronáutica São José dos Campos – Brazil tobias@ita.br

Collaborators

Abigail Castro (ITA/MSc), J. H. A. Nogueira(ITA/Roma I/PhD),
W. de Paula (ITA), G. Salmè (INFN/Roma I), M. Viviani (INFN/Pisa),
J. Carbonell (IPNO), P. Maris (ISU) ,V. Karmanov (Lebedev),
E. Ydrefors (ITA/PD), C. Mezrag (INFN/Roma I/PD), E. Pace (Roma II)

Correlations in Partonic and Hadronic Interactions 2018 Alikhanyan National Laboratory of Armenia, Yerevan, Sept.24-28, 2018

Bethe-Salpeter Amplitude → Light-Front WF (LFWF) basic ingredient in PDFs, GPDs and TMDs

$$\tilde{\Phi}(x, p) = \int \frac{d^4k}{(2\pi)^4} e^{ik \cdot x} \Phi(k, p)$$
$$p^{\mu} = p_1^{\mu} + p_2^{\mu} \qquad k^{\mu} = \frac{p_1^{\mu} - p_2^{\mu}}{2}$$

$$\begin{split} \tilde{\Phi}(x,p) &= \langle 0|T\{\varphi_{H}(x^{\mu}/2)\varphi_{H}(-x^{\mu}/2)\}|p\rangle \\ &= \theta(x^{+})\langle 0|\varphi(\tilde{x}/2)e^{-iP^{-}x^{+}/2}\varphi(-\tilde{x}/2)|p\rangle e^{ip^{-}x^{+}/4} + \bullet \bullet \bullet \\ &= \theta(x^{+})\sum_{n,n'} e^{ip^{-}x^{+}/4}\langle 0|\varphi(\tilde{x}/2)|n'\rangle\langle n'|e^{-iP^{-}x^{+}/2}|n\rangle\langle n|\varphi(-\tilde{x}/2)|p\rangle + \bullet \bullet \bullet \end{split}$$

 $x^+=0$ only valence state remains! How to rebuilt the full BS amplitude?

Iterated Resolvents: Brodsky, Pauli, and Pinsky, Phys. Rep. 301, 299 (1998)

Beyond the valence

Sales, TF, Carlson, Sauer, PRC 63, 064003 (2001)

Marinho, TF, Pace, Salme, Sauer, PRD 77, 116010 (2008)

Population of lower x, due to the gluon radiation!

• Evolution?

+

Beyond the valence

ERBL – DGLAP regions

Reminder... Bethe-Salpeter Bound-State Equation (2 bosons)

$$\Phi(k, p) = G_0^{(12)}(k, p) \int \frac{d^4k'}{(2\pi)^4} iK(k, k'; p) \Phi(k', p)$$

$$G_0^{(12)}(k,p) = \frac{i}{\left[(p/2+k)^2 - m^2 + i\epsilon\right]} \frac{i}{\left[(p/2-k)^2 - m^2 + i\epsilon\right]}$$

Kernel: sum 2PI diagrams

- Valence LF wave function → BSA ?
- Valence → full Fock Space w-f ?

Sales, et al. PRC61, 044003 (2000)

Main Tool: Nakanishi Integral Representation (NIR)

"Parametric representation for any Feynman diagram for interacting bosons, with a denominator carrying the overall analytical behavior in Minkowski space" [Nakanishi PR130(1963)1230]

Bethe-Salpeter amplitude

$$\Phi(k,p) = \int_{-1}^{1} dz' \int_{0}^{\infty} d\gamma' \frac{g(\gamma',z')}{(\gamma'+\kappa^2-k^2-p.kz'-i\epsilon)^3} \\ \kappa^2 = m^2 - \frac{M^2}{4}$$

BSE in Minkowski space with NIR for bosons Kusaka and Williams, PRD 51 (1995) 7026;

Light-front projection: integration in k⁻

Carbonell&Karmanov EPJA27(2006)1;EPJA27(2006)11;

TF, Salme, Viviani PRD85(2012)036009;PRD89(2014) 016010,EPJC75(2015)398 (application to scattering)

$$\psi_{LF}(\gamma, z) = \frac{1}{4} (1 - z^2) \int_0^\infty \frac{g(\gamma', z) d\gamma'}{\left[\gamma' + \gamma + z^2 m^2 + \kappa^2 (1 - z^2)\right]^2}$$

$$\gamma = k_{\perp}^{z} \qquad z = 2x - 1$$

- 0

Solution Method of the Bethe-Salpeter eq.:

Carbonell&Karmanov EPJA27(2006)1;EPJA27(2006)11

$$\Phi(k,p) = G_0(k,p) \int d^4k' \, \mathcal{K}_{BS}(k,k',p) \, \Phi(k',p)$$

$$\int_0^\infty d\gamma' \frac{g_b(\gamma',z;\kappa^2)}{[\gamma'+\gamma+z^2m^2+(1-z^2)\kappa^2-i\epsilon]^2} = \int_0^\infty d\gamma' \int_{-1}^1 dz' \ V_b^{LF}(\gamma,z;\gamma',z')g_b(\gamma',z';\kappa^2).$$

with $V_b^{LF}(\gamma, z; \gamma', z')$ determined by the irreducible kernel $\mathcal{I}(k, k', p)$!

UNIQUENESS OF THE NAKANISHI WEIGHT FUNCTION?

PERTURBATIVE PROOF BY NAKANISHI

NON-PERTURBATIVE PROOF?

 \Rightarrow

¹⁰ *Generalized Stietjes transform and the LF valence wave function* Jaume Carbonell, TF, Vladimir Karmanov PLB769 (2017) 418

$$\psi_{LF}(\gamma,z) = \frac{1-z^2}{4} \int_0^\infty \frac{g(\gamma',z)d\gamma'}{\left[\gamma'+\gamma+z^2m^2+\left(1-z^2\right)\kappa^2\right]^2}.$$

$$f(\gamma) \equiv \int_{0}^{\infty} d\gamma' L(\gamma, \gamma') g(\gamma') = \int_{0}^{\infty} d\gamma' \frac{g(\gamma')}{(\gamma' + \gamma + b)^2}$$

J.H. Schwarz, J. Math. Phys. 46 (2005) 014501,

- UNIQUENESS OF THE NAKANISHI REPRESENTATION (NON-PERTURBATIVE)
- PHENOMENOLOGICAL APPLICATIONS from the valence wf \rightarrow BSA!

(I) Valence LF wave function in impact parameter space

Miller ARNPS 60 (2010) 25
$$F(Q^2) = \int d^2 \mathbf{b} \, \rho(\mathbf{b}) \, e^{-i\mathbf{b}\cdot\mathbf{q}_{\perp}}$$

 $\rho(\mathbf{b}) = \rho_{\text{val}}(\mathbf{b}) + \text{higher Fock states densities} \cdots$ $\rho_{\text{val}}(\mathbf{b}) = \frac{1}{4\pi} \int_{0}^{1} \frac{d\xi}{\xi(1-\xi)^3} |\phi(\xi, \mathbf{b}/(1-\xi))|^2$ » Burkardt IJMPA 18 (2003) 173 $\phi(\xi, \mathbf{b}) = \int \frac{d^2 \mathbf{k}_{\perp}}{(2\pi)^2} \psi(\xi, \mathbf{k}_{\perp}) e^{i\mathbf{k}_{\perp} \cdot \mathbf{b}}$

$$\phi(\xi, b) = \frac{\xi(1-\xi)}{4\pi\sqrt{2}} F(\xi, b)$$

$$F(\xi, b) = \int_{0}^{\infty} d\gamma \ J_{0}(b\sqrt{\gamma}) \int_{0}^{\infty} d\gamma' \ \frac{g(\gamma', 1 - 2\xi; \kappa^{2})}{[\gamma + \gamma' + \kappa^{2} + (1/2 - \xi)^{2}M^{2}]^{2}}$$

(II) Valence LF wave function in impact parameter space

$$F(\xi, b)|_{b\to\infty} \to e^{-b\sqrt{\kappa^2 + (\xi - 1/2)^2 M^2}} f(\xi, b)$$

Fig. 7. The valence functions $f(\xi, b)$ in the impact parameter space. Left panel: the ground state, corresponding to B(0) = 1.9m, $\mu = 0.1m$ and $\alpha_{gr} = 6.437$. Right panel: first-excited state, corresponding to B(1) = 0.22m, $\mu = 0.1m$ and $\alpha_{gr} = 6.437$.

Gutierrez, Gigante, TF, Salmè, Viviani, Tomio PLB759 (2016) 131

Light-front valence wave function L+XL¹³

Large momentum behavior

$$\psi_{LF}(\gamma,\xi) \to \alpha \ \gamma^{-2} C(\xi)$$

Fig. 2. Asymptotic function $C(\xi)$ defined from the LF wave function for $\gamma \to \infty$ (6) computed for the ladder kernel, $C^{(L)}(\xi)$ (dashed line), and ladder plus cross-ladder kernel, $C^{(L+CL)}(\xi)$ (solid line), with exchanged boson mass of $\mu = 0.15 \, m$. Calculations are performed for $B = 1.5 \, m$ (left frame) and $B = 0.118 \, m$ (right frame). A comparison with the analytical forms of $C(\xi)$ valid for the Wick-Cutkosky model for B = 2m (full box) and $B \to 0$ (dash-dotted line) both arbitrarily normalized.

Gigante, Nogueira, Ydrefors, Gutierrez, Karmanov, TF, PRD95(2017)056012.

BSE for qqbar: pion

Carbonell and Karmanov EPJA 46 (2010) 387;

de Paula, TF, Salmè, Viviani PRD 94 (2016) 071901;

 $\Phi(k,p) = S(k+p/2) \int \frac{d^4k'}{(2\pi)^4} F^2(k-k') i\mathcal{K}(k,k') \Gamma_1 \Phi(k',p) \bar{\Gamma}_2 S(k-p/2)$

Ladder approximation (L): suppression of XL (non-planar diagram) for N_c=3 [A. Nogueira, CR Ji, Ydrefors, TF, PLB 777 (2018) 207]

Vector
$$i \mathcal{K}_V^{(Ld)\mu\nu}(k,k') = -ig^2 \frac{g^{\mu\nu}}{(k-k')^2 - \mu^2 + i\epsilon}$$

Vertex Form-Factor $F(q) = \frac{\mu^2 - \Lambda^2}{q^2 - \Lambda^2 + i\epsilon}$

NIR for fermion-antifermion: 0⁻ (pion)

BS amplitude

P/2+k

$$\begin{split} & \longrightarrow \qquad \Phi(k,p) = S_1 \phi_1 + S_2 \phi_2 + S_3 \phi_3 + S_4 \phi_4 \\ & S_1 = \gamma_5 \quad S_2 = \frac{1}{M} \not\!\!\!\! p \gamma_5 \quad S_3 = \frac{k \cdot p}{M^3} \not\!\!\!\! p \gamma_5 - \frac{1}{M} \not\!\!\! k \gamma_5 \quad S_4 = \frac{i}{M^2} \sigma_{\mu\nu} p^{\mu} k^{\nu} \gamma_5 \\ & \phi_i(k,p) = \int_{-1}^{+1} dz' \int_0^\infty d\gamma' \frac{g_i(\gamma',z')}{(k^2 + p \cdot k \ z' + M^2/4 - m^2 - \gamma' + i\epsilon)^3} \end{split}$$

Light-front projection: integration over k (LF singularities)

For the two-fermion BSE, singularities have generic form:

$$\mathcal{C}_j = \int_{-\infty}^{\infty} \frac{dk^-}{2\pi} (k^-)^j \, \mathcal{S}(k^-, \mathbf{v}, \mathbf{z}, \mathbf{z}', \gamma, \gamma') \qquad j = 1, 2, 3$$

with $\mathcal{S}(k^-, v, z, z', \gamma, \gamma')$ explicitly calculable

N.B., in the worst case

$$\mathcal{S}(k^-, v, z, z', \gamma, \gamma') \sim \frac{1}{[k^-]^2} \quad \text{for} \quad k^- \to \infty$$

End-point singularities: T.M. Yan , Phys. Rev. D 7, 1780 (1973)

$$\mathcal{I}(\beta, y) = \int_{-\infty}^{\infty} \frac{dx}{\left[\beta x - y \mp i\epsilon\right]^2} = \pm \frac{2\pi i \,\,\delta(\beta)}{\left[-y \mp i\epsilon\right]}$$

 \rightarrow Kernel with delta's and its derivatives!

End-point singularities – more intuitive: can be treated by the pole-dislocation method de Melo et al. NPA631 (1998) 574C, PLB708 (2012) 87

Scalar boson exchange

Figure 2. Nakanishi weight-functions $g_i(\gamma, z; \kappa^2)$, Eqs. 3.1 and 3.2 evaluated for the 0⁺ twofermion system with a scalar boson exchange such that $\mu/m = 0.5$ and B/m = 0.1 (the corresponding coupling is $g^2 = 52.817$ [17]). The vertex form-factor cutoff is $\Lambda/m = 2$. Left panel: $g_i(\gamma, z_0; \kappa^2)$ with $z_0 = 0.6$ and running γ/m^2 . Right panel: $g_i(\gamma_0, z; \kappa^2)$ with $\gamma_0/m^2 = 0.54$ and running z, The Nakanishi weight-functions are normalized with respect to $g_1(0, 0; \kappa^2)$. Solid line: g_1 . Dashed line: g_2 . Dotted line: g_3 . Dot-dashed line: g_4 .

de Paula, TF, Salmè, Viviani PRD 94 (2016) 071901;

Massless vector exchange: high-momentum tails

de Paula, TF,Salmè, Viviani PRD 94 (2016) 071901;

Power one is expected for the pion valence amplitude: X Ji et al, PRL 90 (2003) 241601.

PION MODEL

W. de Paula, TF, Pimentel, Salmè, Viviani, EPJC 77 (2017) 764

• Gluon effective mass ~ 500 MeV – Landau Gauge LQCD [Oliveira, Bicudo, JPG 38 (2011) 045003; Duarte, Oliveira, Silva, Phys. Rev. D 94 (2016) 01450240]

• Mquark = 250 MeV

[Parappilly, et al, PR D73 (2006) 054504]

• Λ/m =1, 2, 3

Figure 6. Light-front amplitudes $\psi_i(\gamma, \zeta)$, Eq. 3.11, for the pion-like system with a heavy-vector exchange $(\mu/m = 2)$, binding energy of B/m = 1.44 and constituent mass m = 250 MeV. Upper panel: vertex form-factor cutoff $\Lambda/m = 3$ and $g^2 = 435.0$, corresponding to $\alpha_s = 10.68$ (see text for the definition of α_s). Lower panel: vertex form-factor cutoff $\Lambda/m = 8$ and $g^2 = 53.0$, corresponding to $\alpha_s=3.71.$ The value of the longitudinal variable is $\xi_0=0.2$ and $\gamma_0=0$. Solid line: ψ_1 . Dashed line: ψ_2 . Dotted line: ψ_3 . Dot-dashed line: ψ_4

20

Light-front amplitudes

 $(B/m = 1.35, \mu/m = 2.0, \Lambda/m = 1.0, m_q = 215 \text{ MeV})$: $f_{\pi} = 96 \text{ MeV}$

Valence distribution functions

W. de Paula, et. al, in preparation

Valence probability:

$$N_{2} = \frac{1}{32 \pi^{2}} \int_{-1}^{1} dz \int_{0}^{\infty} d\gamma \left\{ \tilde{\psi}_{val}(\gamma,\xi) \ \tilde{\psi}_{val}(\gamma,\xi) + \frac{\gamma}{M^{2}} \ \psi_{val;4}(\gamma,\xi) \ \psi_{val;4}(\gamma,\xi) \right\}$$

$$\begin{split} \tilde{\psi}_{val}(\gamma, z) &= -\frac{i}{M} \int_{0}^{\infty} d\gamma' \frac{g_{2}(\gamma', z)}{[\gamma + \gamma' + m^{2}z^{2} + (1 - z^{2})\kappa^{2} - i\epsilon]^{2}} \\ &- \frac{i}{M} \frac{z}{2} \int_{0}^{\infty} d\gamma' \frac{g_{3}(\gamma', z)}{[\gamma + \gamma' + m^{2}z^{2} + (1 - z^{2})\kappa^{2} - i\epsilon]^{2}} \\ &+ \frac{i}{M^{3}} \int_{0}^{\infty} d\gamma' \frac{\partial g_{3}(\gamma', z)/\partial z}{[\gamma + \gamma' + z^{2}m^{2} + (1 - z^{2})\kappa^{2} - i\epsilon]} \end{split}$$

$$\psi_{val;4}(\gamma,z) = -\frac{i}{M} \int_0^\infty d\gamma' \frac{g_4(\gamma',z)}{[\gamma+\gamma'+m^2z^2+(1-z^2)\kappa^2-i\epsilon]^2} \,.$$

Valence probability

Table 1 Valence probability for a massive vector exchange, with $\mu/m = 0.15$ and a cut-off $\Lambda/m = 2$ for the vertex form-factor. The number of gaussian points is 72.

B/m	Prob.	Î.
0.01	0.96	- F
0.1	0.78	
1.0	0.68	

Table 2 Valence probability for a massive vector exchange, with $\mu/m = 0.5$ and a cut-off $\Lambda/m = 2$ for the vertex form-factor. The number of gaussian points is 72.

B/m	Prob.	1
0.01	0.96	
0.1	0.84	
1.0	0.68	

Lot of room for the higher LF Fock components of the wave function to manifest!

Valence distribution functions: longitudinal and transverse

$\mu/\overline{m} = 0.15$ $\mu/\overline{m} = 0.50$ $\mu/\overline{m} = 0.50$

Fermion-scalar system interacting through a massive scalar exchange

Longitudinal light-cone distribution for a fermion in the valence component. Solid line : $B/\bar{m} = 0.1$. Dotted line: $B/\bar{m} = 0.5$. Dotted line: $B/\bar{m} = 1.0$

with A. Nogueira, Salmè and Pace

Transverse light-cone distribution for a fermion in the valence component.

Conclusions and Perspectives

- Bethe-Salpeter framework Minkowski space: LF wave function & beyond;
- Nakanishi Integral Representation and fermions and fermion-boson BSE's;
- Plataform for extracting mometum distributions valence and beyond;
- Self-energies, vertex corrections, Landau gauge, ingredients from LQCD....
- Confinement?
- Other applications: kaon, D, B, rho..., and the nucleon
- Form-Factors, PDFs, TMDs, Fragmentation Functions...

THANK YOU!

LIA/CNRS - SUBATOMIC PHYSICS: FROM THEORY TO APPLICATIONS

IPNO (Jaume Carbonell).... + Brazilian Institutions ...