

COMPASS experiment: recent results from the spin-programme

Բակուր Պարսամյան

CERN, JINR, University of Turin and INFN UNIVERSITÀ DEGLI STUDI DI TORINO

ALMA UNIVERSITAS TAURINENSIS

on behalf of the COMPASS Collaboration

International Workshop on Correlations in Partonic and Hadronic Interactions (CPHI-2018) Yerevan, Armenia September 24 – 28, 2018

25 September 2018

COMPASS collaboration

Common Muon and Proton Apparatus for Structure and Spectroscopy

۲

众

<u>*</u>

- 24 institutions from 13 countries – nearly 250 physicists
- CERN SPS north area
- Fixed target experiment
- Approved in 1997 (21 years)
- Taking data since 2002

COMPASS web page: http://www.compass.cern.ch

Bakur Parsamyan

OMPAS

COMPASS collaboration

Common Muon and Proton Apparatus for Structure and Spectroscopy

۲

\$

- 24 institutions from 13 countries – nearly 250 physicists
- CERN SPS north area
- Fixed target experiment
- Approved in 1997 (21 years)
- Taking data since 2002

Wide physics program COMPASS-I

- Data taking 2002-2011
- Muon and hadron beams
- Nucleon spin structure
- Spectroscopy

COMPASS web page: http://www.compass.cern.ch

COMPASS collaboration

Common Muon and Proton Apparatus for Structure and Spectroscopy

 \odot

\$

- 24 institutions from 13 countries – nearly 250 physicists
- CERN SPS north area
- Fixed target experiment
- Approved in 1997 (21 years)
- Taking data since 2002

Wide physics program COMPASS-I

- Data taking 2002-2011
- Muon and hadron beams
- Nucleon spin structure
- Spectroscopy

COMPASS-II

- Data taking 2012-2018 (2021)
- Primakoff
- DVCS (GPD+SIDIS)
- Polarized Drell-Yan
- Transverse deuteron SIDIS

Many "beyond 2021" ideas: Proton-radius, Drell-Yan, spectroscopy... \rightarrow <u>NQF-M2</u>

25 September 2018

COMPASS web page: http://www.compass.cern.ch

SIDIS x-section

A.Kotzinian, Nucl. Phys. B441, 234 (1995). Bacchetta, Diehl, Goeke, Metz, Mulders and Schlegel JHEP 0702:093 (2007).

25 September 2018

Bakur Parsamyan

SIDIS x-section

A.Kotzinian, Nucl. Phys. B441, 234 (1995). Bacchetta, Diehl, Goeke, Metz, Mulders and Schlegel JHEP 0702:093 (2007).

25 September 2018

Bakur Parsamyan

$$\frac{d\sigma}{dxdydzdp_{r}^{2}d\phi_{s}d\phi_{s}} = All \text{ measured by COMPASS}$$

$$\begin{bmatrix} \frac{\alpha}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1+\frac{y^{2}}{2x}\right) \right] \left(F_{vv,r} + \varepsilon F_{vv,l}\right)$$

$$\begin{bmatrix} 1+\sqrt{2\varepsilon(1+\varepsilon)}A_{vv}^{\cos\phi}\cos\phi_{h} + \varepsilon A_{vv}^{\cos2\phi}\cos2\phi_{h} \\ + \frac{x}\sqrt{2\varepsilon(1-\varepsilon)}A_{hv}^{\sin\phi}\sin\phi_{h} \\ + \frac{x}\sqrt{2\varepsilon(1-\varepsilon)}A_{hv}^{\sin\phi}\sin\phi_{h} \\ + \frac{x}\sqrt{2\varepsilon(1-\varepsilon)}A_{hv}^{\sin\phi}\sin\phi_{h} + \varepsilon A_{vv}^{\sin2\phi}\sin2\phi_{h}} \\ + \frac{x}\sqrt{2\varepsilon(1+\varepsilon)}A_{vr}^{\sin\phi}\sin\phi_{h} + \varepsilon A_{vv}^{\sin2\phi}\cos\phi_{h}} \end{bmatrix}$$

$$\times \begin{cases} \begin{bmatrix} A_{vr}^{sin(\phi,-\phi_{h})}\sin(\phi_{h}-\phi_{h}) \\ + \frac{x}\sqrt{2\varepsilon(1+\varepsilon)}A_{vr}^{sin(\phi,-\phi_{h})}\sin(\phi_{h}-\phi_{h}) \\ + \sqrt{2\varepsilon(1+\varepsilon)}A_{vr}^{sin(\phi,-\phi_{h})}\sin(2\phi_{h}-\phi_{h}) \\ + \sqrt{2\varepsilon(1+\varepsilon)}A_{vr}^{sin(\phi,-\phi_{h})}\sin(2\phi_{h}-\phi_{h}) \\ + \sqrt{2\varepsilon(1+\varepsilon)}A_{vr}^{sin(\phi,-\phi_{h})}\cos(\phi_{h}-\phi_{h}) \\ + \sqrt{2\varepsilon(1+\varepsilon)}A_{vr}^{sin(\phi,-\phi_{h})}\cos(\phi_{h}-\phi_{h}) \\ + \sqrt{2\varepsilon(1-\varepsilon)}A_{vr}^{sin(\phi,-\phi_{h})}\cos(\phi_{h}-\phi_{h}) \\ + \sqrt{2\varepsilon(1$$

25 September 2018

Bakur Parsamyan

OMPASS

T

25 September 2018

SIDIS x-section and TMDs at twist-2

$$\frac{d\sigma}{dxdydzdp_{l}^{2}d\phi_{d}\phi_{g}} = All \text{ measured by COMPASS}$$

$$\left[\frac{a}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1+\frac{y^{2}}{2x}\right)\right] (F_{UU,r} + \varepsilon F_{UU,L})$$

$$\left[\frac{1+\sqrt{2\varepsilon}(1+\varepsilon)A_{UU}^{\cos\phi}\cos\phi_{h} + \varepsilon A_{UU}^{\cos\phi}\cos\phi_{h}}{1+\sqrt{2\varepsilon}(1-\varepsilon)A_{UU}^{\cos\phi}\cos\phi_{h}} + \varepsilon A_{UU}^{\sin2\phi}\cos2\phi_{h}}{1+\sqrt{2\varepsilon}(1-\varepsilon)A_{UU}^{\sin\phi}\sin\phi_{h}} + \varepsilon A_{UU}^{\sin2\phi}\cos\phi_{h}}\right]$$

$$+ S_{I} \left[\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\sin\phi}\sin\phi_{h} + \varepsilon A_{UU}^{\sin2\phi}\cos\phi_{h}}{1+\sqrt{2\varepsilon}(1-\varepsilon)}A_{UU}^{\cos\phi}\cos\phi_{h}}\right]$$

$$+ S_{I} \left[\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\sin\phi}\sin\phi_{h} + \varepsilon A_{UU}^{\sin2\phi}\cos\phi_{h}}{1+\sqrt{2\varepsilon}(1-\varepsilon)}A_{UU}^{\cos\phi}\cos\phi_{h}}\right]$$

$$+ S_{I} \left[\sqrt{1-\varepsilon^{2}}A_{II} + \sqrt{2\varepsilon}(1-\varepsilon)}A_{UU}^{\cos\phi}\cos\phi_{h}}{1+\sqrt{2\varepsilon}(1+\varepsilon)}A_{UU}^{\sin\phi}(\phi_{h}-\phi_{h})} + \frac{1}{2\phi}A_{UU}^{\sin\phi}\phi_{h}^{2\phi}\phi_{h}^{2\phi}\phi_{h}^{2\phi}}{1+\sqrt{2\varepsilon}(1-\varepsilon)}A_{UU}^{\cos\phi\phi}\cos\phi_{h}}\right]$$

$$+ S_{I} \left[\sqrt{1-\varepsilon^{2}}A_{UT}^{\cos\phi\phi}\cos\phi_{h}} + \sqrt{2\varepsilon}(1-\varepsilon)A_{UT}^{\cos\phi\phi}\cos\phi_{h}} + \sqrt{2\varepsilon}(1-\varepsilon)A_{UU}^{\cos\phi\phi}\cos\phi_{h}^{2\phi}\phi_{h}^{$$

$$\frac{d\sigma}{dxdydzdp_{I}^{2}d\phi_{d}\phi_{g}} = \text{All measured by COMPASS}$$

$$\begin{bmatrix} \frac{\alpha}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1+\frac{y^{2}}{2x}\right) \right] (F_{UU,I} + \varepsilon F_{UU,L})$$

$$\begin{bmatrix} 1+\sqrt{2\varepsilon(1-\varepsilon)}A_{UU}^{\cos\phi}\cos\phi_{h} + \varepsilon A_{UU}^{\cos\phi}\cos2\phi_{s} \\ + \lambda\sqrt{2\varepsilon(1-\varepsilon)}A_{UU}^{\sin\phi}\sin\phi_{h} \\ + S_{L} \left[\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\sin\phi}\sin\phi_{h} - \varepsilon A_{UL}^{\sin2\phi_{h}}\sin2\phi_{h} \right]$$

$$+ S_{L} \left[\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\sin\phi}\sin\phi_{h} + \varepsilon A_{UL}^{\sin2\phi_{h}}\cos\phi_{h} \right]$$

$$\times \begin{cases} A_{UT}^{\sin(\phi_{h}-\phi_{h})} \propto f_{1T}^{-1} \otimes D_{1q}^{h} \\ + S_{L} \left[\sqrt{2\varepsilon(1-\varepsilon)}A_{UU}^{\sin\phi}\cos\phi_{h} - \phi_{h} \right] \\ + \varepsilon A_{UT}^{\sin(\phi_{h}-\phi_{h})}\sin(\phi_{h} - \phi_{h}) \\ + \varepsilon A_{UT}^{\sin(\phi_{h}-\phi_{h})}\sin(\phi_{h} - \phi_{h}) \\ + \frac{1}{\sqrt{2\varepsilon(1+\varepsilon)}}A_{UT}^{\sin\phi}\cos\phi_{h} \\ + \sqrt{2\varepsilon(1+\varepsilon)}A_{UT}^{\sin(\phi_{h}-\phi_{h})}\sin(2\phi_{h} - \phi_{h}) \\ + \sqrt{2\varepsilon(1+\varepsilon)}A_{UT}^{\sin(\phi_{h}-\phi_{h})}\sin(2\phi_{h} - \phi_{h}) \\ + \sqrt{2\varepsilon(1+\varepsilon)}A_{UT}^{\sin(\phi_{h}-\phi_{h})}\cos(\phi_{h} - \phi_{h}) \\ + \sqrt{2\varepsilon(1-\varepsilon)}A_{UT}^{\sin\phi}\cos\phi_{h} \\ + \sqrt{2\varepsilon(1-\varepsilon)}A_{UT}^{\cos\phi_{h}}\cos\phi_{h} \\ + \sqrt{2$$

25 September 2018

Bakur Parsamyan

Ç OMP AS

COMPASS experimental setup: Phase I (muon program)

p (GeV/c)

OMPA

COMPASS experimental setup: Phase I (muon program)

OMPAS

COMPASS experimental setup: Phase I (muon program)

Data-taking years: 2002-2011

Longitudinally polarized (80%) μ^+ beam: Energy: 160/200 GeV/c, Intensity: 2.10⁸ μ^+ /spill (4.8s). Target: Solid state (⁶LiD or NH₃)

- ⁶LiD 2-cell configuration. Polarization (L & T) ~ 50%, f ~ 0.38
- NH₃ 3-cell configuration. Polarization (L & T) ~ 80%, f ~ 0.14
- Data is collected simultaneously with both target spin orientations.
 Periodic polarization reversal to minimize systematic effects

- Broad kinematical range
- Momentum, tracking and calorimetric measurements, PID

COMPAS

• Unpolarized azimuthal asymmetries (SIDIS)

 $\frac{d\sigma}{dxdydzdp_T^2d\phi_h} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + \varepsilon A_{UU}^{\cos2\phi_h}\cos2\phi_h + \lambda\sqrt{2\varepsilon(1-\varepsilon)}A_{LU}^{\sin\phi_h}\sin\phi_h\right\}$

$$F_{UU}^{\cos\phi_h} = \frac{2M}{Q} \mathcal{C} \left\{ -\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M_h} \left(xh^q \boldsymbol{H}_{1q}^{\perp h} + \frac{M_h}{M} f_1^q \frac{\tilde{\boldsymbol{D}}_q^{\perp h}}{z} \right) -\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M} \left(xf^{\perp q} \boldsymbol{D}_{1q}^h + \frac{M_h}{M} h_1^{\perp q} \frac{\tilde{\boldsymbol{H}}_q^h}{z} \right) \right\}$$

$$F_{UU}^{\cos 2\phi_h} = \mathcal{C} \left\{ -\frac{2(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T)(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T) - \boldsymbol{p}_T \cdot \boldsymbol{k}_T}{MM_h} \boldsymbol{h}_1^{\perp q} \boldsymbol{H}_{1q}^{\perp h} \right\}$$

$$F_{LU}^{\sin\phi_h} = \frac{2M}{Q} \mathcal{C} \left\{ -\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M_h} \left(x e^q \boldsymbol{H}_{1q}^{\perp h} + \frac{M_h}{M} f_1^q \frac{\tilde{\boldsymbol{G}}_q^{\perp h}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M} \left(x g^{\perp q} \boldsymbol{D}_{1q}^h - \frac{M_h}{M} h_1^{\perp q} \frac{\tilde{\boldsymbol{E}}_q^h}{z} \right) \right\}$$

COMPAS

 $\frac{d\sigma}{dxdydzdp_T^2d\phi_h} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + \varepsilon A_{UU}^{\cos2\phi_h}\cos2\phi_h + \lambda\sqrt{2\varepsilon(1-\varepsilon)}A_{LU}^{\sin\phi_h}\sin\phi_h\right\}$

$$F_{UU}^{\cos\phi_h} = \frac{2M}{Q} \mathcal{C} \left\{ -\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M_h} \left(x h^q \boldsymbol{H}_{1q}^{\perp h} + \frac{M_h}{M} f_1^q \frac{\tilde{\boldsymbol{D}}_q^{\perp h}}{z} \right) -\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M} \left(x f^{\perp q} \boldsymbol{D}_{1q}^h + \frac{M_h}{M} h_1^{\perp q} \frac{\tilde{\boldsymbol{H}}_q^h}{z} \right) \right\}$$

$$F_{UU}^{\cos 2\phi_h} = \mathcal{C} \left\{ -\frac{2(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T)(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T) - \boldsymbol{p}_T \cdot \boldsymbol{k}_T}{MM_h} \boldsymbol{h}_1^{\perp q} \boldsymbol{H}_{1q}^{\perp h} \right\}$$

$$F_{LU}^{\sin\phi_h} = \frac{2M}{Q} \mathcal{C} \left\{ -\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M_h} \left(x e^q \boldsymbol{H}_{1q}^{\perp h} + \frac{M_h}{M} f_1^q \frac{\tilde{\boldsymbol{G}}_q^{\perp h}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M} \left(x g^{\perp q} \boldsymbol{D}_{1q}^h - \frac{M_h}{M} h_1^{\perp q} \frac{\tilde{\boldsymbol{E}}_q^h}{z} \right) \right\}$$

- Cahn-effect, R.N Cahn, PLB 78 (1978) 40 years!
- Q-suppression, Various different "twist" ingredients
- Measurements at SLAC, CERN, DESY, JLab, Fermilab
- Large asymmetries for h⁺, h⁻
- Strong kinematic dependencies, multi-D extractions
- Boer-Mulders effect PRD 57 (1998) 20years!
- Cahn-mechanism contributes at twist-4 level
- Sizable effect both for h⁺, h⁻ production
- Strong kinematic dependencies, multi-D extractions
- Pure twist-3 effect, expected to be zero within WWA
- Measured by CLAS, HERMES, JLab, COMPASS
- Clear non zero effect

 $\frac{d\sigma}{dxdydzdp_T^2d\phi_h} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + \varepsilon A_{UU}^{\cos2\phi_h}\cos2\phi_h + \lambda\sqrt{2\varepsilon(1-\varepsilon)}A_{LU}^{\sin\phi_h}\sin\phi_h\right\}$

- First preliminary proton results from COMPASS (2016-2017 DVCS-run) were presented at SPIN-2018
- Similarly strong kinematic dependences compared to published COMPASS-deuteron results

(SPIN-2018) A. Moretti for COMPASS

OMPA

 $\frac{d\sigma}{dxdydzdp_T^2d\phi_h} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + \varepsilon A_{UU}^{\cos2\phi_h}\cos2\phi_h + \lambda\sqrt{2\varepsilon(1-\varepsilon)}A_{LU}^{\sin\phi_h}\sin\phi_h\right\}$

- First preliminary proton results from COMPASS (2016-2017 DVCS-run) were presented at SPIN-2018
- Similarly strong kinematic dependences compared to published COMPASS-deuteron results
- Projected uncertainties for 2016+2017 sample are ~5 times smaller compared to published asymmetries
- Systematic errors are also expected to be considerably smaller

 $\frac{d\sigma}{dxdydzdp_T^2d\phi_h} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \sqrt{2\varepsilon \left(1 + \varepsilon\right)} A_{UU}^{\cos\phi_h} \cos\phi_h + \varepsilon A_{UU}^{\cos2\phi_h} \cos2\phi_h + \lambda \sqrt{2\varepsilon \left(1 - \varepsilon\right)} A_{LU}^{\sin\phi_h} \sin\phi_h\right\}$

- First preliminary proton results from COMPASS (2016-2017 DVCS-run) were presented at SPIN-2018
- Similarly strong kinematic dependences compared to published COMPASS-deuteron results
- Projected uncertainties for 2016+2017 sample are ~5 times smaller compared to published asymmetries
- Systematic errors are also expected to be considerably smaller
- Contribution from exclusive vector mesosns is sizably large (at small Q^2 , large z and small P_T)

• Longitudinal target spin dependent azimuthal asymmetries (SIDIS)

 $\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_L \sqrt{2\varepsilon \left(1 + \varepsilon\right)} A_{UL}^{\sin\phi_h} \sin\phi_h + \dots\right\}$

$$F_{UL}^{\sin\phi_h} = \frac{2M}{Q} \mathcal{C} \left\{ -\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M_h} \left(x h_L^q \boldsymbol{H}_{1q}^{\perp h} + \frac{M_h}{M} \boldsymbol{g}_{1L}^q \frac{\tilde{\boldsymbol{G}}_q^{\perp h}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M} \left(x \boldsymbol{f}_L^{\perp q} \boldsymbol{D}_{1q}^h - \frac{M_h}{M} h_{1L}^{\perp q} \frac{\tilde{\boldsymbol{H}}_q^h}{z} \right) \right\}$$

- Q-suppression, TSA-mixing
- Various different "twist" ingredients

 $\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_L \sqrt{2\varepsilon \left(1 + \varepsilon\right)} A_{UL}^{\sin\phi_h} \sin\phi_h + \dots \right\}$

$$F_{UL}^{\sin\phi_h} = \frac{2M}{Q} \mathcal{C} \left\{ -\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M_h} \left(x \boldsymbol{h}_L^q \boldsymbol{H}_{1q}^{\perp h} + \frac{M_h}{M} \boldsymbol{g}_{1L}^q \frac{\tilde{\boldsymbol{G}}_q^{\perp h}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M} \left(x \boldsymbol{f}_L^{\perp q} \boldsymbol{D}_{1q}^h - \frac{M_h}{M} \boldsymbol{h}_{1L}^{\perp q} \frac{\tilde{\boldsymbol{H}}_q^h}{z} \right) \right\}$$

B.Parsamyan (for COMPASS) arXiv:1801.01488 [hep-ex] (DIS-2017)

- Q-suppression, TSA-mixing
- Various different "twist" ingredients
- Non-zero trend for h⁺, h⁻ compatible with zero

 $\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_L \sqrt{2\varepsilon \left(1 + \varepsilon\right)} A_{UL}^{\sin\phi_h} \sin\phi_h + \dots\right\}$

• Non-zero trend for h⁺, h⁻ compatible with zero, clear *z*-dependence

25 September 2018

Non-zero trend for h⁺, h⁻ compatible with zero, clear *z*-dependence

25 September 2018

 $\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_L \sqrt{2\varepsilon \left(1 + \varepsilon\right)} A_{UL}^{\sin\phi_h} \sin\phi_h + \dots \right\}$

- Various different "twist" ingredients
- Non-zero trend for h⁺, h⁻ compatible with zero, clear *z*-dependence

25 September 2018

Bakur Parsamyan

х

 $\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_L \varepsilon A_{UL}^{\sin 2\phi_h} \sin 2\phi_h + \dots\right\}$

$$F_{UL}^{\sin 2\phi_h} = \mathcal{C} \left\{ -\frac{2(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T)(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T) - \boldsymbol{p}_T \cdot \boldsymbol{k}_T}{MM_h} \boldsymbol{h}_{1L}^{\perp q} \boldsymbol{H}_{1q}^{\perp h} \right\}$$

- Only "twist-2" ingredients
- Additional p_T-suppression
- Collins-like behavior?
- In agreement with model predictions

- Only "twist-2" ingredients
- Additional p_T-suppression
- Collins-like behavior?
- In agreement with model predictions

$$\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_L \varepsilon A_{UL}^{\sin 2\phi_h} \sin 2\phi_h + \dots\right\}$$

$$F_{UL}^{\sin 2\phi_h} = \mathcal{C} \left\{ -\frac{2(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T)(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T) - \boldsymbol{p}_T \cdot \boldsymbol{k}_T}{MM_h} \boldsymbol{h}_{1L}^{\perp q} \boldsymbol{H}_{1q}^{\perp h} \right\}$$

- Only "twist-2" ingredients
- Additional p_T-suppression
- Collins-like behavior?
- In agreement with model predictions
- Discrepancy with HERMES and JLab?

25 September 2018

 $\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_L \lambda \sqrt{2\varepsilon \left(1 - \varepsilon\right)} A_{LL}^{\cos\phi_h} \cos\phi_h + \dots\right\}$

- Various different "twist" ingredients,
- Q-suppression

-0.1

 10^{-2}

 10^{-1}

х

 $\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_L \lambda \sqrt{2\varepsilon \left(1 - \varepsilon\right)} A_{LL}^{\cos\phi_h} \cos\phi_h + \dots\right\}$

Small and compatible with zero, in agreement with model predictions

25 September 2018

0.6

0.4

0.2

0

 $A_{\rm LL}$

$$\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_L \lambda \sqrt{1 - \varepsilon^2} A_{LL} + \dots + S_L \lambda \sqrt{1 - \varepsilon^2} + \dots + S_L$$

$$F_{LL}^1 = \mathcal{C}\left\{\boldsymbol{g}_{1L}^{\boldsymbol{q}}\boldsymbol{D}_{1\boldsymbol{q}}^{\boldsymbol{h}}\right\}$$

- Measurement of (semi-)inclusive $A_1(A_{LL})$ is one of the key physics topics of COMPASS
- Large amount of longitudinally polarized data collected with D/P targets (2002-2011)

 $rac{ ilde{G}_q^{\perp h}}{z}$

$$\frac{d\sigma}{dxdydzdp_{T}^{2}d\phi_{h}d\phi_{s}} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{ \begin{array}{l} 1 + \dots \\ 1 + \dots \\ + S_{L} \left[\sqrt{2\varepsilon (1+\varepsilon)} A_{UL}^{\sin\phi_{h}} \sin\phi_{h} \\ + \varepsilon A_{UL}^{\sin2\phi_{h}} \sin2\phi_{h} \end{array} \right] \right\} \\ + S_{L}\lambda \left[\sqrt{1-\varepsilon^{2}} A_{LL} \\ + \sqrt{2\varepsilon (1-\varepsilon)} A_{LL}^{\cos\phi_{h}} \cos\phi_{h} \right] \right\} \\ \overline{F_{UL}^{\sin\phi_{h}}} = \frac{2M}{Q} C \left\{ -\frac{\hat{h} \cdot p_{T}}{M_{h}} \left(xh_{L}^{q}H_{1q}^{\perp h} + \frac{M_{h}}{M} g_{1L}^{q} \frac{\tilde{G}_{q}^{\perp h}}{z} \right) \\ + \frac{\hat{h} \cdot k_{T}}{M_{h}} \left(xf_{L}^{\perp q}D^{h} - \frac{M_{h}}{M} h^{\perp q} \frac{\tilde{H}_{q}^{h}}{z} \right) \right\}$$

$$F_{UL}^{\sin 2\phi_h} = \mathcal{C} \left\{ -\frac{2(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T)(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T) - \boldsymbol{p}_T \cdot \boldsymbol{k}_T}{MM_h} h_{1L}^{\perp q} H_{1q}^{\perp h} \right\}$$

$$F_{LL}^{1} = \mathcal{C}\left\{g_{1L}^{q}D_{1q}^{h}\right\}$$

$$F_{LL}^{\cos\phi_{h}} = \frac{2M}{Q}\mathcal{C}\left\{-\frac{\hat{h}\cdot p_{T}}{M_{h}}\left(xe_{L}^{q}H_{1q}^{\perp h} + \frac{M_{h}}{M}g_{1L}^{q}\frac{\tilde{D}_{q}^{\perp h}}{z}\right)$$

$$+\frac{\hat{h}\cdot k_{T}}{M}\left(xg_{L}^{\perp q}D_{1q}^{h} - \frac{M_{h}}{M}h_{1L}^{\perp q}\frac{\tilde{E}_{q}^{h}}{z}\right)$$

Bakur Parsamyan

COMPASS

...

$$\frac{d\sigma}{dxdydzdp_{T}^{2}d\phi_{h}d\phi_{S}} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{ 1 + S_{L} \left[\sqrt{2\varepsilon (1+\varepsilon)} A_{UL}^{\sin\phi_{h}} \sin\phi_{h} \right] + \varepsilon A_{UL}^{\sin2\phi_{h}} \sin2\phi_{h} \right] + S_{L} \lambda \left[\sqrt{1-\varepsilon^{2}} A_{LL} + \sqrt{2\varepsilon (1-\varepsilon)} A_{LL}^{\cos\phi_{h}} \cos\phi_{h} \right] \right\}$$

COMPASS collected large amount of L-SIDIS data Unprecedented precision!

 $A_{UL}^{\sin\phi_h}$

- Q-suppression, Various different "twist" ingredients
- Sizable TSA-mixing
- Significant h⁺ asymmetry, clear *z*-dependence
- h⁻ compatible with zero

 $A_{UL}^{\sin 2\phi_h}$

- Only "twist-2" ingredients
- Additional p_T-suppression
- Compatible with zero, in agreement with models
- Collins-like behavior?

 $A_{LL}^{\cos\phi_h}$

- Q-suppression, Various different "twist" ingredients
- Compatible with zero, in agreement with models

OMPA

• Transverse target spin dependent azimuthal asymmetries (SIDIS)

SIDIS: target transverse spin dependent asymmetries

0.05

-0.05

 $F_{UT}^{\sin(3\phi_h-\phi_S)}=C$

▲ h⁻

 10^{-2}

 10^{-1}

 $\frac{1}{p_T} \frac{1.5}{(\text{GeV/}c)}$

Proton 2010 data

0.5

B.Parsamyan (for COMPASS) PoS QCDEV2017 (2018) 042

0.2

х

0.4

 $\frac{2(\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_{T})(\boldsymbol{k}_{T}\cdot\boldsymbol{p}_{T})+\boldsymbol{k}_{T}^{2}(\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_{T})-4(\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_{T})^{2}(\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_{T})}{2M^{2}M_{\mu}}h_{1T}^{\perp q}H_{1q}^{\perp h}$

0.6

0.8

Z.

COMPASS preliminary

COMPASS results

 $A_{UT}^{\sin(3\phi_h-\phi_S)}$

- Only "twist-2" ingredients, p_T^2 -suppression
- $h_{1T}^{\perp q}$ is also small (see e.g. PLB769 (2017) 84-89)
- Small, compatible with zero asymmetry

COMPASS results

 $A_{UT}^{\sin(3\phi_h-\phi_S)}$

- Only "twist-2" ingredients, p_T^2 -suppression
- $h_{1T}^{\perp q}$ is also small (see e.g. PLB769 (2017) 84-89)
- Small, compatible with zero asymmetry
- In agreement with models

B.Parsamyan (for COMPASS) PoS QCDEV2017 (2018) 042

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{ \begin{array}{l} 1 + \dots \\ + S_T \left[\begin{array}{c} + \varepsilon A_{UT}^{\sin(3\phi_h - \phi_s)} \sin\left(3\phi_h - \phi_s\right) \\ + \sqrt{2\varepsilon(1 + \varepsilon)} A_{UT}^{\sin\phi_s} \sin\phi_s \\ + \dots \end{array} \right] \right\} \\ + S_T \lambda \left[\sqrt{(1 - \varepsilon^2)} A_{LT}^{\cos(\phi_h - \phi_s)} \cos\left(\phi_h - \phi_s\right) \\ + \dots \end{array} \right] \right\}$$

COMPASS results $A_{UT}^{\sin\phi_S}$

- Q-suppression
- Various different "twist" ingredients
- Within WW is related to Sivers and Collins
- Small asymmetry, non-zero signal for h⁻?

$$F_{UT}^{\sin\phi_{S}} = \frac{2M}{Q} C \left\{ \left(xf_{T}^{q}D_{1q}^{h} - \frac{M_{h}}{M}h_{1}^{q}\frac{\tilde{H}_{q}^{h}}{z} \right) - \frac{p_{T}\cdot k_{T}}{2MM_{h}} \left[\left(xh_{T}^{q}H_{1q}^{\perp h} + \frac{M_{h}}{M}g_{1T}^{q}\frac{\tilde{G}_{q}^{\perp h}}{z} \right) - \left(xh_{T}^{\perp q}H_{1q}^{\perp h} - \frac{M_{h}}{M}f_{1T}^{\perp q}\frac{\tilde{D}_{q}^{\perp h}}{z} \right) \right] \right\}$$

25 September 2018

COMPAS

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{ \begin{array}{l} 1 + \dots \\ + S_T \left[\begin{array}{c} + \varepsilon A_{UT}^{\sin(3\phi_h - \phi_S)} \sin\left(3\phi_h - \phi_S\right) \\ + \sqrt{2\varepsilon\left(1 + \varepsilon\right)} A_{UT}^{\sin\phi_S} \sin\phi_S \\ + \dots \end{array} \right] \right\} \\ + S_T \lambda \left[\sqrt{\left(1 - \varepsilon^2\right)} A_{LT}^{\cos(\phi_h - \phi_S)} \cos\left(\phi_h - \phi_S\right) \\ + \dots \end{array} \right] \right\}$$

B.Parsamyan (for COMPASS) PoS QCDEV2017 (2018) 042 • h⁺ **COMPASS** preliminary Proton 2010 data ▲ h 0.02 $A_{UT}^{sin\phi_{S}}$ -0.02 10^{-2} 10^{-1} 0.5 0.2 0.4 0.6 0.8 1.5 p_{T} (GeV/c) х Ζ.

OMPA

COMPASS results

 $A_{UT}^{\sin\phi_S}$

- Q-suppression
- Various different "twist" ingredients
- Within WW is related to Sivers and Collins
- Small asymmetry, non-zero signal for h⁻?

25 September 2018

S. Bastami, H. Avakian, A. V. Efremov, A. Kotzinian, B. U. Musch, B. Parsamyan, A. Prokudin, M. Schlegel, G. Schnell, P. Schweitzer, W. Vogelsang *"SIDIS in Wandzura-Wilczek-type approximation" - arXiv:1807.10606 [hep-ph]*

 $A_{UT}^{\sin(\phi_s)} \propto Q^{-1} \left(h_1^q \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^h + \dots \right)$

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{ \begin{array}{l} 1 + \dots \\ + S_T \left[\begin{array}{c} + \varepsilon A_{UT}^{\sin(3\phi_h - \phi_s)} \sin\left(3\phi_h - \phi_s\right) \\ + \sqrt{2\varepsilon(1 + \varepsilon)} A_{UT}^{\sin\phi_s} \sin\phi_s \\ + \dots \end{array} \right] \right\} \\ + S_T \lambda \left[\sqrt{\left(1 - \varepsilon^2\right)} A_{LT}^{\cos(\phi_h - \phi_s)} \cos\left(\phi_h - \phi_s\right) \\ + \dots \end{array} \right] \right\}$$

COMPASS results

 $A_{UT}^{\sin\phi_S}$

- Q-suppression
- Various different "twist" ingredients
- Within WW is related to Sivers and Collins
- Small asymmetry, non-zero signal for h⁻?

$$F_{UT}^{\sin\phi_{s}} = \frac{2M}{Q} C \left\{ \left(xf_{T}^{q} D_{1q}^{h} - \frac{M_{h}}{M} h_{1}^{q} \frac{\tilde{H}_{q}^{h}}{z} \right) - \frac{p_{T} \cdot k_{T}}{2MM_{h}} \left[\left(xh_{T}^{q} H_{1q}^{\perp h} + \frac{M_{h}}{M} g_{1T}^{q} \frac{\tilde{G}_{q}^{\perp h}}{z} \right) - \left(xh_{T}^{\perp q} H_{1q}^{\perp h} - \frac{M_{h}}{M} f_{1T}^{\perp q} \frac{\tilde{D}_{q}^{\perp h}}{z} \right) \right] \right\}$$

W. Mao, Z. Lu and B.Q. Ma Phys.Rev. D 90 (2014) 014048

25 September 2018

COMPAS

- Only "twist-2" ingredients
- Sizable non-zero effect for h⁺ !
- Similar effect at HERMES

$$F_{LT}^{\cos(\phi_h-\phi_S)} = C\left[\frac{\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_T}{M} g_{1T}^{q} D_{1q}^{h}\right]$$

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{ \begin{array}{l} 1 + \dots \\ + S_T \left[\begin{array}{c} + \varepsilon A_{UT}^{\sin(3\phi_h - \phi_s)} \sin\left(3\phi_h - \phi_s\right) \\ + \sqrt{2\varepsilon(1 + \varepsilon)} A_{UT}^{\sin\phi_s} \sin\phi_s \\ + \dots \end{array} \right] \right\} \\ + S_T \lambda \left[\sqrt{\left(1 - \varepsilon^2\right)} A_{LT}^{\cos(\phi_h - \phi_s)} \cos\left(\phi_h - \phi_s\right) \\ + \dots \end{array} \right] \right\}$$

COMPASS results

 $A_{LT}^{\cos(\phi_h-\phi_S)}$

- Only "twist-2" ingredients
- Sizable non-zero effect for h⁺ !
- Similar effect at HERMES
- In agreement with models

S. Bastami, H. Avakian, A. V. Efremov, A. Kotzinian, B. U. Musch, B. Parsamyan, A. Prokudin, M. Schlegel, G. Schnell, P. Schweitzer, W. Vogelsang *"SIDIS in Wandzura-Wilczek-type approximation" - arXiv:1807.10606 [hep-ph]*

OMP A

$$\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) + \dots \right\}$$

 $F_{UT}^{\sin(\phi_h+\phi_S)} = C\left[-\frac{\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_T}{M_h}\boldsymbol{h}_1^q\boldsymbol{H}_{1q}^{\perp h}\right]$

• Measured on P/D in SIDIS and in dihadron SIDIS

COMPASS PLB 744 (2015) 250

 $\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_s)} \sin(\phi_h + \phi_s) + \dots\right\}$

$$F_{UT}^{\sin(\phi_h+\phi_S)} = C \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M_h} h_1^q \boldsymbol{H}_{1q}^{\perp h} \right]$$

- Measured on P/D in SIDIS and in dihadron SIDIS
- Compatible results COMPASS/HERMES (Q² is different by a factor of ~2-3)
- No Q²-evolution? Intriguing result!

COMPASS PLB 744 (2015) 250

 $\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_s)} \sin(\phi_h + \phi_s) + \dots\right\}$

2013 2015

0.8

0.6

2013 2015

0.1

- Measured on P/D in SIDIS and in dihadron SIDIS
- Compatible results COMPASS/HERMES (Q² is different by a factor of ~2-3)
- No Q²-evolution? Intriguing result!
- Extensive phenomenological studies and various global fits by different groups

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

0.4

0.2

-0.2

-0.4 0.001

0.2

0.4

 $O^2 = 2.4 \text{ GeV}^2$

0.01

X

z

1

 $\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) + \dots\right\}$

- Measured on P/D in SIDIS and in dihadron SIDIS
- Compatible results COMPASS/HERMES (Q² is different by a factor of ~2-3)
- No Q²-evolution? Intriguing result!
- Extensive phenomenological studies and various global fits by different groups
 Addendum to the COMPASS-II Proposal

 $\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) + \dots\right\}$

- Measured on P/D in SIDIS and in dihadron SIDIS
- Compatible results COMPASS/HERMES (Q² is different by a factor of ~2-3)
- No Q²-evolution? Intriguing result!
- Extensive phenomenological studies and various global fits by different groups
 Addendum to the COMPASS-II Proposal

SIDIS TSAs (Sivers)

$$F_{UT,T}^{\sin(\phi_h-\phi_S)} = C\left[-\frac{\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_T}{M}f_{1T}^{\perp q}\boldsymbol{D}_{1q}^h\right], F_{UT,L}^{\sin(\phi_h-\phi_S)} = 0$$

- Measured on proton and deuteron
- Recently gluon Sivers paper PLB 772 (2017) 854
- Sivers effect at COMPASS is slightly smaller w.r.t HERMES results (Q² is different by a factor of ~2-3)
- Q²-evolution? Intriguing result!

SIDIS TSAs (Sivers)

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T A_{UT}^{\sin(\phi_h - \phi_s)} \sin\left(\phi_h - \phi_s\right)\right\}$$

$$F_{UT,T}^{\sin(\phi_h-\phi_S)} = C\left[-\frac{\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_T}{M}\boldsymbol{f}_{1T}^{\perp q}\boldsymbol{D}_{1q}^h\right], F_{UT,L}^{\sin(\phi_h-\phi_S)} = 0$$

- Measured on proton and deuteron
- Recently gluon Sivers paper PLB 772 (2017) 854
- Sivers effect at COMPASS is slightly smaller w.r.t HERMES results (Q² is different by a factor of ~2-3)
- Q²-evolution? Intriguing result!
- Global fits of available 1-D SIDIS data
- Different TMD-evolution schemes
- Different predictions for Drell-Yan
- Sivers TMD PDF is predicted to change the sign between SIDIS and DY

S. M. Aybat, A. Prokudin, T. C. Rogers **PRL 108 (2012) 242003** M. Anselmino, M. Boglione, S. Melis **PRD 86 (2012) 014028**

Multi-D TSA analysis

 $\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T A_{UT}^{\sin(\phi_h - \phi_s)} \sin\left(\phi_h - \phi_s\right) + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_s)} \sin\left(\phi_h + \phi_s\right) \dots \right\}$

Salvador Dali "Maximum Speed of Raphael's Madonna"

ÇOMP A.

Raphael "Madonna del Prato"

Salvador Dali "Maximum Speed of Raphael's Madonna"

Raphael "Madonna del Prato"

Raphael "Madonna del Prato" (poor resolution)

ÇOMPASX

JDV . OIDIO 1 ٠ 1 1

SIDIS and single-polarized DY x-sections

$$\frac{d\sigma}{dxdydzdp_{t}^{2}d\phi_{t}d\phi_{s}} = SIDIS$$

$$\begin{bmatrix} \frac{d\sigma}{dq^{t}d\Omega} \propto (F_{U}^{1} + F_{U}^{2}) & DY \\ \frac{d\sigma}{dq^{t}d\Omega} \propto (F_{U}^{1} + F_{U}^{2}) & (F_{U}^{1} + F_{U}^{2}) & DY \\ \frac{d\sigma}{dq^{t}d\Omega} \propto (F_{U}^{1} + F_{U}^{2}) & DY \\ \frac{d\sigma}{dq^{t}d\Omega} \propto$$

25 September 2018

SIDIS and single-polarized DY x-sections at twist-2 (LO)

SIDIS and single-polarized DY x-sections at twist-2 (LO)

$$\frac{d\sigma^{LO}}{dxdydzdp_{r}^{2}d\phi_{d}d\phi_{s}} \propto (F_{v_{U,I}} + \varepsilon F_{v_{U,L}})$$
SIDIS $\frac{d\sigma^{LO}}{dq^{4}d\Omega} \propto F_{U}^{1}(1 + \cos^{2}\theta_{cs})$
DY

$$\downarrow \downarrow \downarrow \varepsilon F_{V,c} \varepsilon A_{UL}^{sin(2\phi,-\phi)} \sin(\phi_{h} - \phi_{s})$$

$$+ S_{L} \varepsilon A_{UL}^{sin(\phi,-\phi)} \sin(\phi_{h} - \phi_{s})$$

$$+ S_{T} \left(\sqrt{(1 - \varepsilon^{2})} A_{LT}^{cos(\phi_{h} - \phi_{s})} \sin(3\phi_{h} - \phi_{s}) \right)$$
where $D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]} = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}] = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}] = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}] = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}] = \sin^{2}\theta_{cs} / (1 + \cos^{2}\theta_{cs})$$

$$\downarrow \psi = D_{[su^{2}\phi_{cs}]$$

COMPASS accesses all 8 twist-2 nucleon TMD PDFs in SIDIS and 5 nucleon+2 pion TMD PDFs in DY

25 September 2018

Bakur Parsamyan

SIDIS and single-polarized DY x-sections at twist-2 (LO)

$$\frac{d\sigma^{LO}}{dxdydzdp_{r}^{2}d\phi_{d}d\phi_{s}} \propto (F_{UU,r} + \varepsilon F_{UU,L})$$
SIDIS $\frac{d\sigma^{LO}}{dq^{4}d\Omega} \propto F_{U}^{1}(1 + \cos^{2}\theta_{cs})$
DY
$$\downarrow \int \frac{d\sigma^{LO}}{dq^{4}d\Omega} \propto F_{U}^{1}(1 + \cos^{2}\theta_{cs})$$

$$\downarrow \int \frac{d\sigma^{LO}}{dq^{4}d\Omega} \propto f_{U}^{1}(2\theta_{cs} - \theta_{s})$$

$$\downarrow \int \frac{d\sigma$$

200 Table 200

within QCD TMD-framework:

 $h_1^{\perp q} \& f_{1T}^{\perp q}$ TMD PDFs are expected to be "conditionally" universal (SIDIS \leftrightarrow DY: sign change) $h_1^q \& h_{1T}^{\perp q}$ TMD PDFs are expected to be "genuinely" universal (SIDIS \leftrightarrow DY: no sign change) 25 September 2018 Bakur Parsamyan 58

Complementary information from different channels :

- SIDIS-DY bridging of nucleon TMD PDFs
- Multiple access to Collins FF $H_{1q}^{\perp h}$ and pion Boer-Mulders PDF $h_{1,\pi}^{\perp q}$

Bakur Parsamyan

COMPASS x:Q² phase space (DY 2015 data)

25 September 2018

SIDIS and single-polarized DY x-sections at twist-2 (LO)

Strong J/ ψ -signal \rightarrow study of J/ ψ physics Good signal/background

 $\langle x_{\pi} \rangle = 0.31, \langle x_N \rangle = 0.09, \langle x_F \rangle = 0.22, \langle q_T \rangle = 1.1 \text{ GeV/c}$

$4.3 < M/(GeV/c^2) < 8.5$ "High mass" range

SIDIS and single-polarized DY x-sections at twist-2 (LO)

Beyond charmonium region, background < 3%

Valence region \rightarrow largest asymmetries

HM events are in the valence quark range

Comparable x:Q² coverage – minimization of possible Q²-evolution effects

SIDIS Sivers TSA in COMPASS Drell-Yan Q²-ranges

 $\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T A_{UT}^{\sin(\phi_h - \phi_s)} \sin\left(\phi_h - \phi_s\right) + \dots\right\}$

$$F_{UT,T}^{\sin(\phi_h-\phi_S)} = C \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M} f_{1T}^{\perp q} D_{1q}^h \right], F_{UT,L}^{\sin(\phi_h-\phi_S)} = 0$$

0.2

х

0.4

0.6

0.8

Z.

0.5

COMPASS PLB 770 (2017) 138

 10^{-2}

 10^{-1}

1.5

 p_{τ} (GeV/c)

1

COMPASS

SIDIS Sivers TSA in COMPASS Drell-Yan Q²-ranges

 $\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T A_{UT}^{\sin(\phi_h - \phi_s)} \sin\left(\phi_h - \phi_s\right) + \dots\right\}$

$$F_{UT,T}^{\sin(\phi_h-\phi_S)} = C\left[-\frac{\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_T}{M}f_{1T}^{\perp q}D_{1q}^h\right], F_{UT,L}^{\sin(\phi_h-\phi_S)} = 0$$

M. Boglione, U. D'Alesio, C. Flore and J.O. Gonzalez-Hernandez JHEP 1807 (2018) 148

 $A_{UT}^{sin(\varphi_h^{}-\;\varphi_S^{})}$

 $A_{UT}^{sin(\varphi_h-\varphi_S)}$

ÇOMPASX

• Results from first ever measurement of Drell-Yan TSAs

Veto
Single-polarized DY x-section: unpolarized part

$$\lambda = A_U^1 = \frac{F_U^1 - F_U^2}{F_U^1 + F_U^2}, \, \mu = A_U^{\cos \varphi_{CS}}, \, \nu = 2A_U^{\cos 2\varphi_{CS}}$$

- "naive" Drell–Yan model collinear ($k_T=0$) LO pQCD no rad. processes $\lambda=1, (F_U^2=0), \mu=\nu=0$
- Intrinsic transverse motion + QCD effects $\lambda \neq 1, \mu \neq 0, \nu \neq 0$ but $1-\lambda=2\nu$ (Lam-Tung)
- Experiment, $\lambda \neq 1, \mu \neq 0, \nu \neq 0$

$$\frac{d\sigma}{dq^4 d\Omega} \propto \left(F_U^1 + F_U^2\right) \\ \times \begin{cases} 1 + A_U^1 \cos^2 \theta_{CS} + \\ \sin^2 \theta_{CS} A_U^{\cos 2\varphi_{CS}} \cos 2\varphi_{CS} + \sin 2\theta_{CS} A_U^{\cos \varphi_{CS}} \cos \varphi_{CS} \end{cases}$$

COMPASS ongoing analysis

Single-polarized DY x-section: unpolarized part

$$\lambda = A_U^1 = \frac{F_U^1 - F_U^2}{F_U^1 + F_U^2}, \, \mu = A_U^{\cos \varphi_{CS}}, \, \nu = 2A_U^{\cos 2\varphi_{CS}}$$

- "naive" Drell–Yan model collinear (k_T=0) LO pQCD no rad. processes λ=1, (F_U²=0), μ=ν=0
- Intrinsic transverse motion + QCD effects $\lambda \neq 1, \mu \neq 0, \nu \neq 0$ but $1-\lambda=2\nu$ (Lam-Tung)
- Experiment,

 $\lambda \neq 1, \, \mu \neq 0, \, \nu \neq 0$

 v ≠ 0 - Energy and quark flavour dependence, QCD radiative effects, non-coplanarity (PRD93, 114013 (2016), PLB 758 (2016) 384)

$$\frac{d\sigma}{dq^4 d\Omega} \propto \left(F_U^1 + F_U^2\right) \\ \times \begin{cases} 1 + A_U^1 \cos^2 \theta_{CS} + \\ \sin^2 \theta_{CS} A_U^{\cos 2\varphi_{CS}} \cos 2\varphi_{CS} + \sin 2\theta_{CS} A_U^{\cos \varphi_{CS}} \cos \varphi_{CS} \end{cases} \end{cases}$$

COMPASS ongoing analysis

Single-polarized DY x-section: transverse part

$$\lambda = A_U^1 = \frac{F_U^1 - F_U^2}{F_U^1 + F_U^2}, \, \mu = A_U^{\cos \varphi_{CS}}, \, \nu = 2A_U^{\cos 2\varphi_{CS}}$$

- "naive" Drell–Yan model collinear ($k_T=0$) LO pQCD no rad. processes $\lambda=1, (F_U^2=0), \mu=\nu=0$
- Intrinsic transverse motion + QCD effects $\lambda \neq 1, \mu \neq 0, \nu \neq 0$ but $1-\lambda=2\nu$ (Lam-Tung)
- **Experiment,** $\lambda \neq 1, \mu \neq 0, \nu \neq 0$

$$\frac{d\sigma}{dq^{4}d\Omega} \propto \left(F_{U}^{1} + F_{U}^{2}\right)\left(1 + A_{U}^{1}\cos^{2}\theta_{CS}\right)$$

$$\times \begin{cases} 1 + D_{\left[\sin^{2}\theta_{CS}\right]}A_{U}^{\cos2\varphi_{CS}}\cos2\varphi_{CS} + D_{\left[\sin2\theta_{CS}\right]}A_{U}^{\cos\varphi_{CS}}\cos\varphi_{CS} \\ + D_{\left[\sin^{2}\theta_{CS}\right]}A_{U}^{\sin(\varphi_{CS}-\varphi_{S})}\sin(\varphi_{CS}-\varphi_{S}) \\ + A_{T}^{\sin(\varphi_{CS}+\varphi_{S})}\sin(\varphi_{CS}+\varphi_{S}) \end{pmatrix} \\ + D_{\left[\sin^{2}\theta_{CS}\right]}\left(A_{T}^{\sin(2\varphi_{CS}-\varphi_{S})}\sin(2\varphi_{CS}-\varphi_{S}) \\ + A_{T}^{\sin(2\varphi_{CS}+\varphi_{S})}\sin(2\varphi_{CS}-\varphi_{S}) \\ + A_{T}^{\sin(2\varphi_{CS}+\varphi_{S})}\sin(2\varphi_{CS}+\varphi_{S}) \end{pmatrix} \end{cases}$$

$$\mathsf{D}_{\left[f(\theta_{CS})\right]} = f\left(\theta_{CS}\right) / \left(1 + A_U^1 \cos^2 \theta_{CS}\right)$$

- All five Drell-Yan TSAs are extracted simultaneously using extended unbinned Maximum likelihood estimator.
- Depolarization factors are evaluated under assumption $A_U^1 = 1$
- Possible impact of $A_U^1 \neq 1$ scenarios lead to a normalization uncertainty of at most -5%.

25 September 2018

Bakur Parsamyan

77

25 September 2018

OMPA

COMPAS

OMPAS

OMP

SIDIS and DY TSAs at COMPASS (high-mass range)

$$\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{ \begin{array}{l} 1 + \dots \\ 1 + \dots \end{array} \right\}$$
$$+ S_{\rm T} \left\{ \begin{array}{l} A_{UT}^{\sin(\phi_h - \phi_s)} \sin\left(\phi_h - \phi_s\right) \\ + \varepsilon A_{UT}^{\sin(\phi_h + \phi_s)} \sin\left(\phi_h + \phi_s\right) \\ + \varepsilon A_{UT}^{\sin(3\phi_h - \phi_s)} \sin\left(3\phi_h - \phi_s\right) \\ + \sqrt{2\varepsilon (1 + \varepsilon)} A_{UT}^{\sin\phi_s} \sin\phi_s \\ + \sqrt{2\varepsilon (1 + \varepsilon)} A_{UT}^{\sin(2\phi_h - \phi_s)} \sin\left(2\phi_h - \phi_s\right) \end{array} \right\}$$

COMPASS PLB 770 (2017) 138

$$\frac{d\sigma^{LO}}{dq^4 d\Omega} \propto F_U^1 \left(1 + \cos^2 \theta_{CS} \right) \left\{ \begin{array}{l} 1 + \dots \\ 1 + \dots \end{array} \right\}$$
$$+ S_T \left[\begin{array}{l} A_T^{\sin \varphi_S} \sin \varphi_S \\ + D_{\left[\sin^2 \theta_{CS}\right]} \left(A_T^{\sin(2\varphi_{CS} - \varphi_S)} \sin\left(2\varphi_{CS} - \varphi_S\right) \\ + A_T^{\sin(2\varphi_{CS} + \varphi_S)} \sin\left(2\varphi_{CS} + \varphi_S\right) \right) \\ + D_{\left[\sin 2\theta_{CS}\right]} \left(A_T^{\sin(\varphi_{CS} - \varphi_S)} \sin\left(\varphi_{CS} - \varphi_S\right) \\ + A_T^{\sin(\varphi_{CS} + \varphi_S)} \sin\left(\varphi_{CS} + \varphi_S\right) \right) \end{array} \right\}$$

COMPASS

COMPASS PRL 119, 112002 (2017)

A new QCD facility at the M2 beam line of the CERN SPS

COMPASS beyond 2020 workshop, CERN, March 21-22, 2016 Physics Beyond Colliders kick-off workshop CERN, September 6-7, 2016 IWHSS17 COMPASS workshop, Cortona, Italy, April 2-5, 2017 Dilepton Productions with Meson and Antiproton Beams workshop, ECT*, Trento, Italy, November 2017 Physics Beyond Colliders annual workshop, CERN, November 21-22, 2017 IWHSS18 – COMPASS workshop, Bonn, Germany, March 19-21, 2018 Mini Workshop for a QCD Facility at the SPS after 2021 – CERN, 20 June 2018 IWHSS19 – COMPASS workshop, Aveiro, Portugal, June 23-28, 2019

A new QCD facility at the M2 beam line of the CERN SPS

Program	Physics Goals	Beam Energy [GeV]	Beam Intensity [s ⁻¹]	Trigger Rate [kHz]	Beam Type	Target	Earliest start time, duration	Hardware Additions
μp	Precision							active TPC,
elastic	proton-radius	100	$4 \cdot 10^{6}$	100	μ^{\pm}	high-pr.	2022	SciFi trigger,
scattering	measurement					H2	1 year	silicon veto,
Hard		1.50	a 10 ⁷		+			recoil silicon,
exclusive	GPD E	160	$2 \cdot 10'$	10	μ^{\perp}	NH ₃	2022	modified
reactions							2 years	PT magnet
Input for	n production	20.280	5.10^{5}	25	n	1112	2022	I He
DMS	cross section	20-280	5.10	25		LHe	1 month	target
	cross section						1 monun	target spectr.:
\overline{p} -induced	Heavy quark	12.20	$5 \cdot 10^{7}$	25	\overline{D}	LH2	2022	tracking.
Spectroscopy	exotics	12,20			P		2 years	calorimetry
Drell-Yan	Pion PDFs	190	$7 \cdot 10^7$	25	π^{\pm}	C/W	2022	
							1-2 years	
								"active
Drell-Yan	Kaon PDFs &	~100	10^{8}	25-50	K^{\pm}, \overline{p}	$\rm NH_3^\uparrow,$	2026	absorber",
(RF)	Nucleon TMDs					C/Ŵ	2-3 years	vertex det.
	Kaon polarisi-						non-exclusive	
Primakoff	bility & pion	~ 100	$5 \cdot 10^6$	> 10	K^{-}	Ni	2026	
(RF)	life time						1 year	
Prompt							non-exclusive	
Photons	Meson gluon	≥ 100	$5 \cdot 10^{6}$	10-100	K^{\pm}	LH2,	2026	hodoscope
(RF)	PDFs				π^{\pm}	Ni	1-2 years	
K-induced	High-precision							recoil TOF,
Spectroscopy	strange-meson	50-100	$5 \cdot 10^{\circ}$	25	K^{-}	LH2	2026	forward
(RF)	spectrum						1 year	PID
	Spin Density		- 6					
Vector mesons	Matrix	50-100	$5 \cdot 10^{\circ}$	10-100	K^{\pm}, π^{\pm}	from H	2026	
(RF)	Elements					to Pb	1 year	

Standard muon beams Standard hadron beams RF-separated hadron beams

HOME DOCUMENTS

Welcome

Over the past four decades, measurements at the external beam lines of the CERN SPS have been at the center of worldwide attention. These experimental results have challenged QCD as our theory describing visible matter, thus serving as important input to develop improvements of the theory.

As of today, these beam lines remain unique and bear great potential for a significant future advancement of our understanding of hadronic matter. Hence we propose to establish a world-unique QCD facility that will use the external SPS M2 beam line in conjunction with a universal spectrometer in the experimental hall EHN2. After a major upgrade in a second phase, it will be possible to produce unique beams with considerably enhanced fractions of kaons or anti-protons, thereby opening access to a wide range of new physics opportunities.

The Letter of Intent available on this site is summarizing most of the present ideas for possible future measurements to be performed at the CERN M2 beam line. It was prepared with the objective to serve as a basis for building a broad community dedicated to these new studies. During the forthcoming year the document is expected to evolve towards a full proposal for a new experimental facility. It is planned to be ready in time for the 2019/2020 Update of the European Strategy for Particle Physics.

l am interested to join e-mail list of NQF to stay updated

Your email address ★	
Message for us	

) Home

-) Documents
-) Workshops
-) Timelines
-) I am interested

Contact

CERN CH-1211 Geneva 23 Switzerland NQF-M2@cern.ch

https://nqf-m2.web.cern.ch

25 September 2018

Conclusions

- During phase I COMPASS has measured all possible SIDIS azimuthal LSAs and TSAs
 - Recently COMPASS has performed first multidimensional analysis of SIDIS proton TSAs: PLB 770 (2017) 138
 - No hints for significant Q²-dependences of Sivers and Collins TSAs
 - Apart from Sivers and Collins effects non-zero signal was observed for *twist-2* $A_{LT}^{\cos(\phi_h \phi_s)}$ and *subleading-twist* $A_{UT}^{\sin\phi_s}$ TSAs
 - COMPASS has measured SIDIS proton LSAs with unprecedented precision
 - *twist-2* $A_{UL}^{\sin 2\phi_h}$ asymmetry seem to exhibit a Collins-like behavior
 - Significant effect was observed for subleading-twist $A_{UL}^{\sin\phi_h}$ LSA
- In 2015 COMPASS has successfully collected first ever polarized DY data PRL 119, 112002 (2017)

• A second year of polarized DY data-taking will take place in 2018

- COMPASS-II proposal addendum: SIDIS run in 2021 with transversely polarized deuteron target was recently approved!
- Prospects for a future experiment at CERN (SPS M2) are being actively discussed
 - Letter of Intent (Draft 1.0) is now public <u>arXiv:1808.00848</u> [hep-ex]
 - Particular attention is given to possible Drell-Yan measurements

Spare slides

25 September 2018

SIDIS: target longitudinal spin dependent asymmetries

$$\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_L \varepsilon A_{UL}^{\sin 2\phi_h} \sin 2\phi_h + \dots \right\}$$

$$F_{UL}^{\sin 2\phi_h} = \mathbb{C} \left\{ -\frac{2(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T)(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T) - \boldsymbol{p}_T \cdot \boldsymbol{k}_T}{MM_h} h_{1L}^{\perp q} H_{1q}^{\perp h} \right\}$$

- Only "twist-2" ingredients
- Additional p_T-suppression

B. Parsamyan (for COMPASS) arXiv:1801.01488 [hep-ex] (DIS-2017)

OMP A

- Various different "twist" ingredients,
- Q-suppression

SIDIS: target longitudinal spin dependent asymmetries $\frac{d\sigma}{dxdydzdp_{T}^{2}d\phi_{h}d\phi_{s}} \propto (F_{UU,T} + \varepsilon F_{UU,L}) \left\{ 1 + \dots + S_{L} \begin{bmatrix} \sqrt{2\varepsilon(1+\varepsilon)}A_{UL}^{\sin\phi_{h}}\sin\phi_{h} \\ + \varepsilon A_{UL}^{\sin2\phi_{h}}\sin2\phi_{h} \end{bmatrix} + S_{L}\lambda \begin{bmatrix} \sqrt{1-\varepsilon^{2}}A_{LL} \\ + \sqrt{2\varepsilon(1-\varepsilon)}A_{UL}^{\cos\phi_{h}}\cos\phi_{h} \end{bmatrix} \right\}$ COMPASS preliminary z > 0.2, x > 0.032

COMPASS collected large amount of L-SIDIS data Unprecedented precision!

 $A_{UL}^{\sin\phi_h}$

- Q-suppression, Various different "twist" ingredients
- Sizable TSA-mixing
- Significant h⁺ asymmetry, clear *z*-dependence,
- h⁻ compatible with zero

 $A_{UL}^{\sin 2\phi_h}$

- Only "twist-2" ingredients
- Additional p_T-suppression
- Compatible with zero, in agreement with models
- Collins-like behavior?

 $A_{LL}^{\cos\phi_h}$

- Q-suppression, Various different "twist" ingredients
- Compatible with zero, in agreement with models

SIDIS Sivers TSA in COMPASS Drell-Yan Q²-ranges

 $\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T A_{UT}^{\sin(\phi_h - \phi_s)} \sin(\phi_h - \phi_s) + \dots \right\}$

$$F_{UT,T}^{\sin(\phi_h-\phi_S)} = C \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M} f_{1T}^{\perp q} D_{1q}^h \right], F_{UT,L}^{\sin(\phi_h-\phi_S)} = 0$$

Multi-dimensional input for TMD evolution studies

COMPASS PLB 770 (2017) 138

No clear Q²-dependence within statistical accuracy

The solid (dashed) curves represent the calculations for TMD (DGLAP) evolution for the Sivers TSAs based on the best fit of 1D COMPASS and HERMES data from Phys. Rev. D86 (2012) 014028 by M. Anselmino et al.

Possible decreasing trend for Sivers TSA?

OMP A

SIDIS Collins TSA in COMPASS Drell-Yan Q²-ranges

 $\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_s)} \sin(\phi_h + \phi_s) + \dots\right\}$

$$F_{UT}^{\sin(\phi_h+\phi_S)} = C \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{\boldsymbol{M}_h} h_1^q \boldsymbol{H}_{1q}^{\perp h} \right]$$

COMPASS

SIDIS TSAs (Sivers)

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T A_{UT}^{\sin(\phi_h - \phi_S)} \sin(\phi_h - \phi_S) + \dots\right\}$$

$$F_{UT,T}^{\sin(\phi_h-\phi_S)} = C\left[-\frac{\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_T}{M}f_{1T}^{\perp q}D_{1q}^h\right], F_{UT,L}^{\sin(\phi_h-\phi_S)} = 0$$

- Measured on proton and deuteron
- Recently gluon Sivers paper PLB 772 (2017) 854
- Sivers effect at COMPASS is slightly smaller w.r.t HERMES results (Q² is different by a factor of ~2-3)
- Q²-evolution? Intriguing result!
- Global fits of available 1-D SIDIS data
- Different TMD-evolution schemes
- Different predictions for Drell-Yan
- Sivers TMD PDF is predicted to change the sign between SIDIS and DY

M.G. Echevarria, A.Idilbi, Z.B. Kang and I. Vitev, **PRD 89 074013 (2014)**

à

25 September 2018

COMPASS DY: high mass range

0.6

0.4

0.8

()25 September 2018

0.2

0.2

0

Bakur Parsamyan

1<M_{uu}<2

 10^{-2}

 10^{-1}

 10^{-3}

0.3

0.2

0.1

0

 X_{π}

 x_N 102

0.2

0.1

SIDIS TSAs (Sivers)

 $\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T A_{UT}^{\sin(\phi_h - \phi_s)} \sin\left(\phi_h - \phi_s\right) + \dots\right\}$

$$F_{UT,T}^{\sin(\phi_{h}-\phi_{S})} = C\left[-\frac{\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_{T}}{M}f_{1T}^{\perp q}D_{1q}^{h}\right], F_{UT,L}^{\sin(\phi_{h}-\phi_{S})} = 0$$

- Measured on proton and deuteron
- Recently gluon Sivers paper PLB 772 (2017) 854
- Sivers effect at COMPASS is slightly smaller w.r.t HERMES results (Q² is different by a factor of ~2-3)
- Q²-evolution? Intriguing result!
- Global fits of available 1-D SIDIS data
- Different TMD-evolution schemes
- Different predictions for Drell-Yan
- Sivers TMD PDF is predicted to change the sign between SIDIS and DY
- First experimental investigation of Sivers-non-universality by STAR
- Different hard scale compared to FT
- Evolution effects may play a substantial role

STAR p+p 500 GeV (L = 25 pb⁻¹) STAR p+p 500 GeV (L = 25 pb⁻¹) $0.5 < P_T^W < 10 \ GeV/c$ $0.5 < P_T^W < 10 \ GeV/c$ 0.6 0.6 0.4 0.4 0.2 0.2 -0.2 -0.2 $W^{+} \rightarrow I^{+} \nu$ H W → ľν -0.4 run 17 proj. (L=350pb⁻¹, P=55%) run 17 proj. (L=350pb⁻¹, P=55%) - KQ - no TMD evol. -0.6 — KQ - no TMD evol. -0.6 EIKV - TMD evolved EIKV - TMD evolved -0.8 3.4% beam pol. uncertainty not shown -0.8 3.4% beam pol. uncertainty not shown -0.5 -0.5 0.5 0.5 vw vw

STAR collaboration: PRL 116, 132301 (2016)

M. Anselmino et al., JHEP 1704 (2017) 046 (no TMD evolution)

AN

The $p_T(q_T)$ – weighted SIDIS(DY) Sivers asymmetry

General formalism was first introduced in 1997 (A. Kotzinian and P. Mulders, PLB 406 (1997) 373)

Sivers TSA in SIDIS: $A_{UT}^{\sin(\phi_h - \phi_s)} \propto f_{1T}^{\perp q} \otimes D_{1q}^h$ Sivers wTSA in SIDIS: $A_{UT}^{\sin(\phi_h - \phi_s)} \propto f_{1T}^{\perp q \ (1)} \times D_{1q}^h$

OMP

The $p_T(q_T)$ – weighted SIDIS(DY) Sivers asymmetry

General formalism was first introduced in 1997 (A. Kotzinian and P. Mulders, PLB 406 (1997) 373)

Sivers TSA in SIDIS:	$A_{UT}^{\sin(\phi_h-\phi_s)} \propto f_{1T}^{\perp q} \otimes D_{1q}^h$
Sivers wTSA in SIDIS:	$A_{UT}^{\sin(\phi_h-\phi_s)} \propto f_{1T}^{\perp q\ (1)} imes D_{1q}^h$
Sivers TSA in DY:	$A_T^{\sin arphi_S} \propto f_{1,\pi}^{q} \otimes f_{1T,\mathrm{p}}^{\perp q}$
Sivers wTSA in DY:	$A_T^{\sin arphi_S} \propto f_{1,\pi}^{q} imes f_{1T,\mathrm{p}}^{\perp q(1)}$

Valence quark dominance No Q²-evolution for Sivers PDF

ÇOMP AS

The $p_T(q_T)$ – weighted SIDIS(DY) Sivers asymmetry

General formalism was first introduced in 1997 (A. Kotzinian and P. Mulders, PLB 406 (1997) 373)

COMPAS

Lorentz-invariance relations

The "bag" model, "spectator" model, "light-cone constituent quark" model, "chiral quark soliton" model, "covariant parton" model with intrinsic 3D-symmetric parton orbital motion, "quark-traget" model

