Studying Neutron-Induced Reactions for Basic Science and Societal Applications

Correlations in Hadronic and Partonic Interactions 2018

A. Couture

Yerevan, Armenia 28 September 2018

Outline

- An Introduction to Neutrons
- Why Study Neutrons and Neutron Interactions?
- Neutron Facilities and Techniques
- Outlook

From Elements to Nuclei

Image Credit: Scherri, Royal Society of Chemistry (2012)

Chart of the Nuclides: A Low Energy Nuclear Physicist's View of the Landscape

Neutron Properties

- Lifetime:
 - 877.7 s (bottle value)
- Mass:
 - m_n = 939.57 MeV/c² = 1.008664 u
- Charge:
 - No Charge!
- Spin
 - $J_{\pi} = \frac{1}{2}^{+}$
- (+ 16 more pages in the Particle Data Book)
 - http://pdg.lbl.gov/2018/listings/rpp2018-list-n.pdf

3Li P	4Li 6.03 MeV P: 100.00%	5Li ≈1.5 MeV P: 100.00% α: 100.00%	6Li STABLE 7.59%	7Li STABLE 92.41%
	3He STABLE 0.000134%	4He STABLE 99.999866%	5He 0.60 MeV Ν: 100.00% α: 100.00%	6He 806.7 MS β-: 100.00%
1H STABLE	2H STABLE	3H 12.32 Y	4H	5H 5.7 MeV
99.9885%	0.0115%	β-: 100.00 %	N: 100.00%	2N: 100.00%

Nuclear Physics with Neutrons

- Studies of the weak force in a "simple" nuclear system
- Nuclear Astrophysics
- Neutron Resonances and Nuclear Structure
- Low-energy Neutron Imaging
- Fission Studies—Bringing it all together

The Neutron as a Laboratory for Fundamental Interactions

- Neutron decay is a probe of the weak charge current
- The neutron is a "simple" to try to treat theoretically
- This both test the Standard Model and is needed for interpreting Big Bang Nucleosynthesis
- Different techniques give a 9.2 sec difference on a lifetime just under 900 s

- Pattie *et al.* bottle measurement
 - 877.7 ± 0.7 (stat) +0.4/-0.2 (sys) s
- Leading beam measurement
 - 887.4 ± 2.2 s
- Measurements are ongoing to resolve

Nuclear Astrophysics: Synthesis of the heavy elements relies on neutron-induced reactions

Abundances and Attribution from Anders & Grevasse, 1989 And Käppeler and Wisshak, 1989

- Heavy element synthesis dominated by neutron capture
- Knowledge of neutron capture reveals information about stellar evolution, neutron densities, and galactic history

Short-Lived Nuclei Drive Understanding of Stellar Environments and Astrophysical Sites

- Mumpower et al. showed individual neutron capture rates impacted final abundances
- This demonstrated a need for (n,γ) rates far from stability

r-process network (n,γ) sensitivity

Weak s-Process Network

- Reactions on unstable isotopes are key for nucleosynthesis
- In particular, they provide information about the temperature and neutron density

Neutron Capture on ⁶³Ni

- Improved measurement of neutron capture cross sections, particularly on unstable isotopes inform nucleosynthesis
- ⁶³Ni is one such case
- Increases in the neutron capture cross section bypass ⁶³Cu production, which is a calibration for the weak s-process

Relative isotope production

Neutrons allow resolved access to study structure at high excitation

Los Alamos National Laboratory

- Neutron resonance spectroscopy allows measurements at eV resolution at several MeV excitation
- Cross section studies are only a small fraction of the available physics

Koehler et al. PRL 108 (2012) ¹⁴⁷Sm(*n*,γ) 1.0 Data, $E_n < 300 \text{ eV}$ 0.8 Data, $300 < E_n < 700 \text{ eV}$ $\sigma_{\rm N}$ = 4.67, $\langle \Gamma_{\rm v} \rangle$ = 52.0 meV Fraction > $\sigma_N = 11.7, \langle \Gamma_n \rangle = 59.6 \text{ meV}$ 0.6 0.4 0.2 0.0 60 40 80 100 120 Γ, (meV)

- Detailed measurements of resonance widths in ¹⁴⁷Sm revealed an expected change at ~300 eV neutron energy
 - Q-Value: 8.14139 MeV
- This has implications for statistical interpretations of nuclear levels as well as cross sections and applications

Low energy neutrons offer the ability to isolate isotopes (or elements) and edge features

Lead sinkers+AI wire Absorption contrast

- Energy Resolved
 Imaging
 - A. Thermal Image
 - B. W gated
 - C. ²³⁸U gated

- Phase-Contrast Imaging
 - "cold" neutrons
 - Measurements at varying distance
 - Internal edge features become available

Fission: A Bane and Beauty of Nuclear Physics

Neutron production facilities

- Neutron studies (unsurprisingly) require neutrons
- This presents challenges as they are
 - Short lived
 - Cannot be directed/accelerated
 - Difficult to trap
- Neutron facilities typically employ
 - Spallation
 - Direct reactions
 - Reactor neutrons
 - I won't discuss reactor facilities further

Neutron Spallation at the Los Alamos Neutron Science Center

LANSCE at Los Alamos opens the door to many new measurements

800 MeV linear accelerator: H+ beams for isotope production and Hbeams to drive two neutron beam facilities

Lujan center: moderated spallation source, three flight paths devoted to nuclear science sub-thermal $\leq En \leq 500 \text{ keV}$

WNR: unmoderated spallation target, generating neutrons with 100 keV \leq En \leq 600 MeV

How are neutron measurements traditionally performed at time-of-flight facilities?

 E_p = 800 MeV v_p =20 Hz 10 meV < E_n < 500 keV ϕ_n = 3 • 10⁵ n/s/cm²/decade

Details vary with facility, but the basic principles are the same

Direct Reactions from ⁷**Li(p,n)**

Measuring neutron spectra at Karlsruhe, circa 1997

FRANZ in Germany and SARAF in Israel are extending this to high power

The <u>Fra</u>nkfurt <u>n</u>eutron source at the Stern-Gerlach-<u>Z</u>entrum (FRANZ)

Slide Credit: R. Reifarth

- Advances in accelerator technology and targetry enable new facilities
- Neutron flux enhancements of orders of magnitude over existing facilities
- This will open new measurements on unstable isotopes
- SARAF-I is in production with keV neutrons
- SARAF-II will offer beams up to 40 MeV

Neutron Facilities for Nuclear Physics Exist Around the World and are Growing

Facility

Neutron Spectrum

Detection

DANCE/LANSCE nTOF (CERN) ORELA (ORNL) GELINA (IRMM) FZK (Karlsruhe) SARAF (Israel) FRANZ (Germany) TUNL (USA)

Spallation TOF white BaF_2 (calorimeter)Spallation TOF white C_6D_6 , BaF_2 e^- LINAC, TOF white C_6D_6 , BaF_2 e^- LINAC, TOF white C_6D_6 (p,n) TOF 25 keV Maxwellian BaF_2 , Activation(p,n) 25 keV Maxwellian (MeV Coming)Activation(p,n) 25 keV Maxwellian (planned) BaF_2 , Activation(d,d), (d,t) "Monoenergetic"Activation

• RPI, Tokyo Tech, IPNS (Argonne), Ohio Univ., Univ. of Kentucky, nELBE, others

Outlook

- Neutron physics offers a rich set of science
 - Much of this physics is, at best, difficult to access with other probes
- Advances in accelerator technology, beam transport, and targetry are making ever more powerful facilities available
- Much work remains to be done, particularly on unstable isotopes
- Surprising gaps in knowledge exist, even on stable isotopes
- Neutron science has direct impacts on a range of applied fields in addition to basic science

Thank you!

Orion's Belt seen from Los Alamos, NM

Photo Courtesy of Shannon Scott