

Accelerator based Dark Matter searches

M.Battaglieri INFN-GE Italy

482580764

Accelerator based Dark Matter searches

Dark Matter (DM) vs Baryonic Matter (BM)

Compelling astrophysical indications about DM existence

★ How much DM w.r.t. BM?

- ★ Does DM participate to non-gravitational interactions?
 ★ Is DM a new particle?
- ★ Constraint on DM mass and interactions
 - should be 'dark' (no em interaction)
 - should weakly interact with SM particles
 - should provide the correct relic abundance
 - should be compatible with CMB power spectrum

... assuming that the gravity is not modified and DM undergoes to other interactions

★ We can use what we know about standard model particles to build a DM theory

Use the SM as an example: $SM = U(I)_{EM} \times SU(2)_{Weak} \times SU(3)_{Strong}$

Particles, interactions and symmetries

Known particles & new forcecarriers Particles: quarks, leptons

Force-carriers: gluons, γ, W, Z, graviton (?), Higgs, ... Two options:

- \star New matter interacting trough the same forces
- ★ New matter interacting through new forces

Any guess about the DM mass and interaction?

Yes, if we do a couple of assumptions:

★ DM thermal origin

in the early Universe DM was in thermal equilibrium with regular matter (via annihilation)

★ DM as thermal relic from the hot early Universe Minimal DM abundance is left over to the present day

Correct DM density for an annihilation xsec: $\langle \sigma v \rangle \sim 3 \times 10^{-26} \text{ cm}^3/\text{s} \sim 1/(20 \text{ TeV})^2$

WIMPs (Weakly Interacting Massive Particles)

- Massive DM with massive mediator
- For ~100 GeV DM mass, weak-scale mediators provide reasonable annihilation rate and range of DMscattering rates

Thermal origin suggests DM interactions and mass in the vicinity of the weak-scale

 $\langle \sigma v \rangle \sim M^2_{DM}/M^4_{mediator}$

Exploring the WIMP's option

★ Experimental limits

Slow-moving cosmological weakly interacting massive particles

- DM detection by measuring the (heavy) nucleus recoil
 Constraints on the interaction strength from the DM Direct Detection limits
 - Scattering through Z boson ($\sigma \sim 10^{-39}$ cm²): ruled out
 - Approaching limits for scattering through the Higgs (σ ~10⁻⁴⁵cm²)
- Close to irreducible neutrino background

I Direct Detection WIMP Mass [GeV/c²] I MeV I GeV Mz VIMP Mass I O TeV WIMPS

- * No signal in direct detection
- * Experiments have (almost) no sensitivity to (light) DM (<I GeV)

Any guess about the DM mass and interaction?

★ (Obvious) first guess: DM interaction in the range of the weak force scale (WIMPS) with DM mass in the range of TeV

WIMPs paradigm is not the only option (keeping the DM thermal origin)

 $\langle \sigma v \rangle \sim$ $g^2_{\text{Dark}} g^2_{\text{SM}} M^2_{\text{DM}}/M^4_{\text{mediator}}$

Light Dark Matter

5

Light Dark Matter (<TeV) naturally introduces light mediators

New interaction

* Definition of [adimensional] variable $y \sim g^2_{Dark} g^2_{SM} (M_{DM}/M_{mediator})^4 \sim \langle \sigma v \rangle M^2_{DM}$

$$\langle \sigma v \rangle \propto \epsilon^2 \alpha_D \frac{m_{\varphi}^2}{m_{A'}^4} = \epsilon^2 \alpha_D \frac{m_{\varphi}^4}{m_{A'}^4} \frac{1}{m_{\varphi}^2} = \frac{y}{m_{\varphi}^2}$$

Computed for $m_{A'}/m_{\phi/\chi} = 3$

But thermal target largely insensitive to this ratio

Light Dark Matter

★ Experimental limits

6

e @ Lab12

LDM - Direct Detection limits

PhysRevLett. 109.021301 R.Essig, A.Manalaysay, J.Mardon, P.Sorensen, T.Volansky,

- Fixed target electron beam experiments can be 10³ - 10⁴ more sensitive in the I MeV - I GeV mass range
- No experiments were designed to measure LDM (all limits come from reinterpretation of old experiments)

 Best limits on LDM interaction cross section obtained by direct DM detection (XENONI0 and LUX)

- X_{cosmic}-e scattering
- I-electron ionization sensitivity
- No FF for the scattering

PhysRevD.88.114015 E.Izaguirre, G.Krnjaic, Gordan, P.Schuster, N.Toro

7

Dark forces and dark matter (Light WIMPs - light mediators)

Accelerator based Dark Matter searches

Fixed target vs. collider **Fixed Target** e+e- colliders $E_1 \xrightarrow{A'} E_1 x$ $E_1 (1-x)$ Process Nucleus $\sim 10^{23}$ 10¹¹ e-10¹¹ e⁻ $10^{11} e^+$ Luminosity atoms ın target $\sigma \sim \frac{\alpha^2 \epsilon^2}{E^2} \sim O(10 \ fb)$ $\sigma \sim \frac{\alpha^3 Z^2 \epsilon^2}{m^2} \sim O(10 \ pb)$ **Cross-Section** $*I/M_{A'}$.vs. I/E_{beam} low backgrounds • high backgrounds *Coherent scattering • higher A' mass • limited A' mass from Nucleus (~Z²)

Accelerator based Dark Matter searches

9

<u>e (ab12</u>

A' visible and invisible decay at accelerators

Fixed target: $p N \rightarrow N \gamma' \rightarrow p$ Lepton Lepton+ → FERMILAB, SERPUKHOV

High Energy Hadron Colliders: $pp \rightarrow lepton jets$ \rightarrow ATLAS, CMS, CDF&D0

Meson decays: $\pi^0, \eta, \eta', \omega, \rightarrow \gamma' \gamma (M)$ \rightarrow Lepton Lepton + γ (M) \rightarrow KLOE, BES3, WASA-COSY, PHENIX

> Annihilation: $e+e- \rightarrow \gamma' \gamma \rightarrow \mu \mu \gamma$ \rightarrow BABAR, BELLE, **KLOE, CLEO**

Beam-dump experiments - visible -

* e- beam incident on thick target
* A' is produce in a process similar to ordinary Bremsstrahlung
* A' carries most of the beam energy
* A' emitted forward at small angle
* A' decays before the detector

Accelerator based Dark Matter searches

Accelerator based Dark Matter searches

Hunting for A' at accelerators

Fixed target: $e \ N \rightarrow N \ \gamma' \rightarrow N \ Lepton^- \ Lepton^+$ \rightarrow JLAB, MAINZ Fixed target: $p \ N \rightarrow N \ \gamma' \rightarrow p \ Lepton^- \ Lepton^+$ \rightarrow FERMILAB, SERPUKHOV Annihilation: $e^+e^- \rightarrow \gamma' \ \gamma \rightarrow \mu\mu \ \gamma$ \rightarrow BABAR,BELLE,KLOE Meson decays: π^0 , η , η' , $\omega' \rightarrow \gamma' \ \gamma \rightarrow Lepton^- \ Lepton^+ \ \gamma$ \rightarrow KLOE, BES3, NA48, HC

coupling vs mass

Hunting for A' at accelerators

Fixed target: $e \ N \rightarrow N \gamma' \rightarrow N$ Lepton- Lepton+ \rightarrow JLAB, MAINZ Fixed target: $p \ N \rightarrow N \gamma' \rightarrow p$ Lepton- Lepton+ \rightarrow FERMILAB, SERPUKHOV Annihilation: $e+e- \rightarrow \gamma' \gamma \rightarrow \mu\mu \gamma$ \rightarrow BABAR,BELLE,KLOE Meson decays: π^0 , η , η' , $\omega' \rightarrow \gamma' \gamma \rightarrow$ Lepton- Lepton+ γ \rightarrow KLOE, BES3, NA48, HC

No positive signal (so far) but limits in parameter space coupling vs mass

Dark forces and dark matter

(Light DM - light mediators)

e lab12

17

Particle physics search of A' - invisible -

Fixed target: $e \ N \rightarrow N \ \gamma' \rightarrow N \ Lepton^{-} \ Lepton^{+}$ $\rightarrow JLAB, MAINZ$ Fixed target: $p \ N \rightarrow N \ \gamma' \rightarrow p \ Lepton^{-} \ Lepton^{+}$ $\rightarrow FERMILAB, SERPUKHOV$ Annihilation: $e+e- \rightarrow \gamma' \ \gamma \rightarrow \mu\mu \ \gamma$ $\rightarrow BABAR, BELLE, KLOE$ Meson decays: $\pi^{0}, \eta, \eta', \omega, \rightarrow \gamma' \ \gamma \rightarrow Lepton^{-} \ Lepton^{+} \ \gamma$ $\rightarrow KLOE, BES3, NA48, HC$

No positive signal (so far) but limits in parameter space coupling vs mass

Accelerator based Dark Matter searches

20

<u>e (ab12</u>

e⁺ annihilation on fixed (thin) target

- Main limitation: limited energy in the CM ~ $sqrt(E_{beam})$
- High energy positron beams are not (yet) available
- The highest energy at JLab (~II GeV) Max m_{A'}~ 106 MeV

The BDX experiment

Two step process

I) An electron radiates an A' and the A' promptly decays to a χ (DM) pair

II) The χ (in-)elastically scatters on a e-/nucleon in the detector producing a visible recoil (GeV)

Experimental signature in the detector:

X-electron \rightarrow EM shower ~GeV energy

21

Plastic scintillator + WLS fibres, sips RO

M.Battaglieri - INFN GE

<u>e ()</u>lab12

22

Accelerator based Dark Matter searches

Missing energy/momentum BD experiments

Present ...

- E137 and NA64: null results interpreted as invisible decay search
- No showering effects included

- Active beam-dump experiment
- Missing energy exp (e Z \rightarrow e Z' A' with A' \rightarrow invisible)
- 100 GeV SPS electron beam at SPS
- Active target (calorimeter)
- Exclusion plots based on 3x109 EOT

... and future BD experiments

- LDMX: missing momentum exp proposed at SLAC-LCLS-II 4 GeV ebeam, (Active beam-dump)
- BDX: beam-dump exp proposed at JLAB 11 GeV e- beam with 10²² EOT in 1y run

24

Missing endergy/momentum BD experiments

... but

MissingMomentum vs BeamDump (disappearance vs appearance)

... more sensitive in the exclusion plots but less reliable/convincing in case of positive finding!

The two experimental approaches are complementary

★BDX will reach the ultimate sensitivity of beam dump experiments hitting the irreducible ∨ bg with a consolidated technology ready-to-go

★LDMX presents challenges that if/when overcome will lead the 2nd generation LDM searches experiments

Accelerator based Dark Matter searches

Status and perspectives

Experiment	Lab	Production	$D_{ m etection}$	V_{ertex}	$M_{ m ass}(MeV)$	$^{M_{ m BSS}}R_{ m ess.}~(MeV)$	$B_{ m eam}$	$E_{beam} (GeV)$	lbeam or Lumi	Machine	$lst R_{\rm UII}$	$^{Next} R_{un}$
APEX	JLab	e-brem	$\ell^+\ell^-$	no	65 - 600	0.5%	e^-	1.1–4.5	150 μA	CEBAF(A)	2010	2018
A1	Mainz	e-brem	e^+e^-	no	40 - 300	?	e^-	0.2–0.9	140 μA	MAMI	2011	-
HPS	JLab	e-brem	e^+e^-	yes	20 - 200	1–2	e^-	1–6	50–500 nA	CEBAF(B)	2015	2018
DarkLight	JLab	e-brem	e^+e^-	no	< 80	?	e^-	0.1	10 mA	LERF	2016	2018
MAGIX	Mainz	e-brem	e^+e^-	no	10 - 60	?	e	0.155	1 mA	MESA	2020	-
NA64	CERN	e-brem	e^+e^-	no	1 - 50	?	e^-	100	$2\times 10^{11}~{\rm EOT/yr}$	SPS	2017	2022
Super-HPS	SLAC	e-brem	vis	yes	< 500	?	e	4 - 8	$1\mu\mathrm{A}$	DASEL	?	?
(TBD)	Cornell	e-brem	e^+e^-	?	< 100	?	e^-	0.1-0.3	100 mA	CBETA	?	?
VEPP3	Budker	annih	invis	no	5 - 22	1	e^+	0.500	$10^{33}{\rm cm}^{-2}{\rm s}^{-1}$	VEPP3	2019	?
PADME	Frascati	annih	invis	no	1 - 24	2 - 5	e^+	0.550	$\leq 10^{14}e^+{\rm OT/y}$	Linac	2018	?
MMAPS	Cornell	annih	invis	no	20 - 78	1 - 6	e^+	6.0	$10^{34}{\rm cm}^{-2}{\rm s}^{-1}$	Synchr	?	?
KLOE 2	Frascati	several	vis/invis	no	$< 1.1{ m GeV}$	1.5	e^+e^-	0.51	$2\times 10^{32}{\rm cm}^{-2}{\rm s}^{-1}$	$DA\phi NE$	2014	-
Belle II	KEK	several	vis/invis	no	$\lesssim 10GeV$	1 - 5	e^+e^-	4×7	$1\sim 10~{\rm ab^{-1}/y}$	Super-KEKB	2018	-
SeaQuest	FNAL	several	$\mu^+\mu^-$	yes	$\lesssim 10{\rm GeV}$	3 - 6%	р	120	10^{18} POT/y	MI	2017	2020
SHIP	CERN	several	vis	yes	$\lesssim 10{\rm GeV}$	1 - 2	р	400	2×10^{20} POT/5y	SPS	2026	-
LHCb	CERN	several	$\ell^+\ell^-$	yes	$\lesssim 40{\rm GeV}$	~ 4	рр	6500	$\sim 10{\rm fb}^{-1}/{\rm y}$	LHC	2010	2015

Dark Sectors 2016 Workshop arXiv:1608.08632

Dark Matter Basic Research Needs Workshop

the H

15-18 October 2018 Gaithersburg Marriott Washingtonian Center US/Eastern time

coming soon! U.S. Cosmic Visions: New Ideas in Dark Matter un for decidio socies. The un for decidio socies. The us in our protrait. In sear " searches in searches in user pro-23-25 March 2017 Stamp Student Union, University of Maryland, College "To respond to the 2014 P5 report recommendation matter particles and maintaining a diversity of DOE Office of High Energy Physics (HEP) identifying new, small projects for nergy Physics of parameter space (ext ten years. On currently being science for HEP, a asking for ained along with id community in plan the program forward. Input (the whole project is ~ ning meetings and \$10 million o unexplored parameter space. A follow-on phone n White Paper would be a good path to community wor provide the input encourage you to collect information from the community, includ orists and experimentalists involved in non-accelerator **2ND INTERNATIONAL WORKSHOP** WORKSHOP ON ARK 2016 DOLA ISOLA D'ELBA ids for light dark matter Dark forces and ex ces and matter at the GeV-scale and rable challenges that must be overcome to fully explore ios. The goal of this workshop is to tackle these ions to problems of principle and technology that are cur sility to fully explore light dark matter, dark pho LAC National Accelerator Laborato Light Dark Matter search @ Accelerators on (SLAC Toro (SLAC) -conf.slac.stanford.edu/dark

SLAC ACCELERATOR

LDMA-2015

()

Camogli, Italy June 24-26 2015

INFN

e @lab12

M.Battaglieri - INFN GE

International Advisory Commi

Local Organizing Committee

Conclusions

* Existence of Dark Matter is a compelling reason to investigate new forces and matter over a broad range of mass

* Accelerator-based (Light)DM search provides unique feature of distinguish DM signal from any other cosmic anomalies or effects

* Extensive experimental plans at high intensity e-facility: JLab, LNF, Cornell, Mainz, SLAC (+ p beam at FNAL and CERN)

* A new generation of dedicated and optimised experiments at high intensity frontier will test the relic (light) dark matter scenario

* Jefferson Lab is the world-leader facility for present and near-future LDM searches: APEX, HPS, DarkLight, BDX (and possibly e+ annihilation and LDMX)

* Significant interests from funding agencies (DOE/NSF) and labs (CERN and JLab) to run small scale experiments with a great discovery potential

* Discovery or decisive tests of simplest scenarios will possible in the next ~5-8 years!