

Nuclear Physics for Materials Science & Cultural Heritage

Khachatur Manukyan

Nuclear Science Laboratory, Department of Physics, University of Notre Dame

Correlations in Partonic and Hadronic Interactions

24 - 28 September 2018, Yerevan, Armenia

Outline

- Radiation damage of materials
- Positive aspect of radiation on materials
- Targets for nuclear physics
- Ion beam analysis for cultural heritage objects

Radiation Damage of Materials

- Expansion
- Radiation-induced segregation
- Thermal conductivity
- Embrittlement
- Cracking, etc.

Radiation Damage in nuclear fuel and rector materials

Hybrid organic-inorganic perovskite solar cells

 $CH_3NH_3PbX_3$ perovskites (X=I, Br and/or CI). The methylammonium cation ($CH_3NH_3^+$) is surrounded by PbX_6 octahedra

- Tunable optical bandgap (1.5 2.3 eV)
- High solar efficiencies (23 27%)
- Easy and affordable processing

Nuclear Science Lab at Notre Dame

Irradiation perovskite with 1MeV proton beam

Positive aspect of radiation on materials

Reactive multi-layer nano-foils

Ni + Al = NiAl (intermetallic material) Temperature increases to 1600°C within few milliseconds

Bonding of materials

Α

Ni

Application of accelerated ion beam for tailoring the properties Focus of previous works

- Influence of bilayer thickness on reaction heat and velocity
- Effects of thermal properties on the reaction front
- Mechanism of phase transformation.

Intermixed layer

Key open issues

- The influence of <u>intermixing</u> and <u>atomic defects</u> on ignition and combustion characteristics
- The nucleation processes at early stages of reaction.

Accelerated ion beams are used tailor the atomic structure of Ni/Al reactive nanofoils and study the *atomic structure - nucleation - reactivity* relationship.

General Purpose Chamber

SNICS Ion Source

Ni/Al foil

Transmission Electron Microscope (TEM) sample preparation and imaging

Focused Ion Beam Milling / Scanning Electron Microscopy FIB/SEM

TEM analysis of foils bombarded with ¹²C⁴⁺ beam

SAD patterns of 0 and 40 bombardment times have similar rings. A foil bombarded for 150 min contains Al₃Ni and Ni₃Al along with Ni and Al

Beam powder ~0.4W

HRTEM analysis of foils bombarded with ¹²C⁴⁺ beam (40 min)

HRTEM analysis of foils bombarded with ¹²C⁴⁺ beam (40 min)

Al₃Ni nuclei in intermixed amorphous layer

Ignition characteristics of bombarded foils

Ignition characteristics of bombarded foils

Short-term bombardment: Al₃Ni nuclei formed in intermixed layer significantly decrease ignition temperature and ignition delay time.

Targets for nuclear physics

Targetry

- Routine preparation of natural and isotopically pure targets
- Characterization of targets using nuclear physics and materials science tools
- Development of new processes and materials for targets

Characterization of targets

Figure 2: Cross-sectional SEM images for carbon-20(a), carbon-60 (b), gold(c), platinum (d), nickel (e), aluminum (f) and tin (g) targets

Development of new materials for targets

Copper powder compact

Development of new materials for targets

Microstructure of joined W-Cu sample: (a) without nickel of soldering layer, (b) and (c) with Ni soldering layer with 25 mm of thickness, high magnification image of Ni-W joining layer (d)

Thermal diffusivity of joined W/Al/Cu (a), W/Ni/Cu and W/Cu (b) samples

Development of new processes and materials for targets

Oxidizers	Reducers	Solvents
Metal nitrate hydrates	Urea, CH_4N_2O	Water, H ₂ O
$Me^{n}(NO_{3})_{n}\cdot xH_{2}O,$	Glycine , $C_2H_5NO_2$	Liquid hydrocarbons:
where Me = Fe, Ni, Zn, Al, Cu,	Glucose, <i>C</i> ₁₂ <i>H</i> ₂₂ <i>O</i> ₁₂	
Sr, La, Bi, Zr, Li, Co, U, etc.	Hydrazine (N ₂ H ₄)	
n - metal valence		

Novel methods for targets preparation

Alpha particle counting by a silicon detector

Ion beam analysis for cultural heritage objects

Particle-induced X-ray emission (PIXE)

Protons transmit energy to the innershell electrons, ionize atoms with subsequent X-ray de-excitation

PIXE/XRF analysis of Roman silver coins

Silvering of Copper coins

X-rav fluorescence (XRF) mapping

Large scale XRF mapping combined with Raman spectroscopy

Shines from other side of the leaf

Potential collaborations

Applied R & D Division

- Solid State Radiation Physics
- Optics and Spectroscopy

Matenadaran

Institute of Chemical Physics NAS RA

