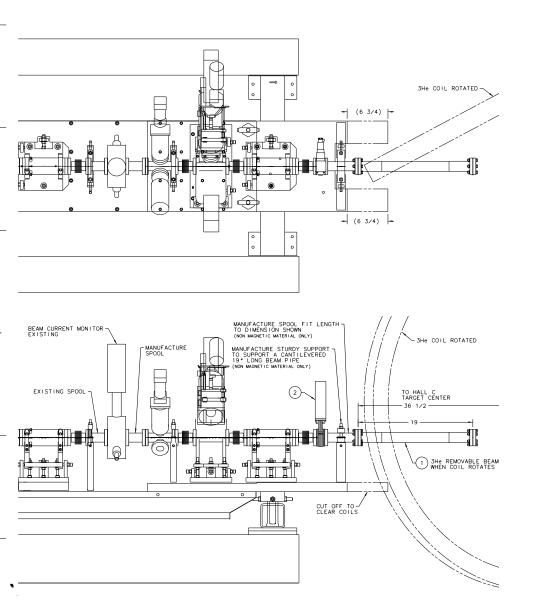
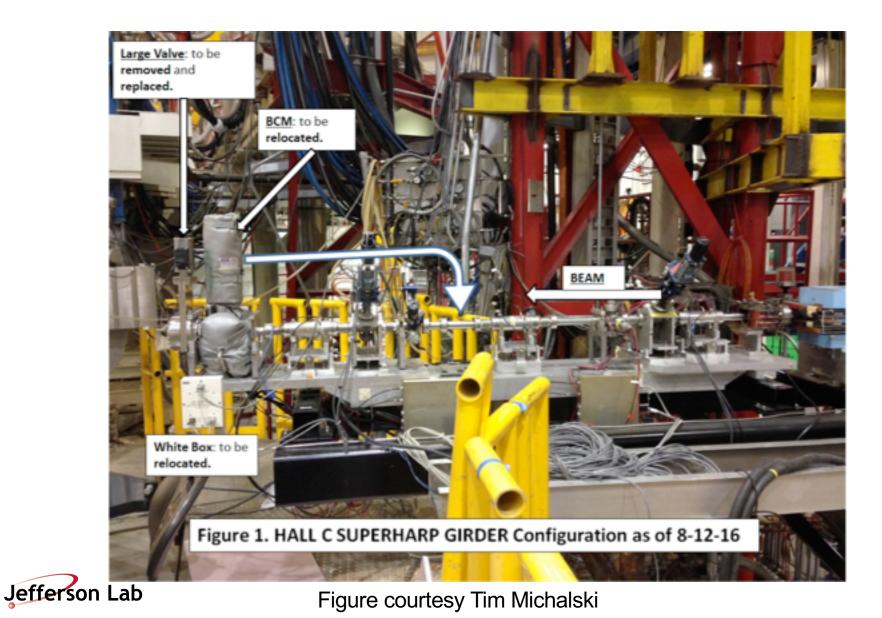
Hall C Beamline and Moller Polarimetry

Dave Gaskell A1n/d2n Collaboration Meeting June 15, 2018


Outline

- 1. Beamline work
- 2. Møller Polarimeter

Beamline Modifications for Polarized ³He

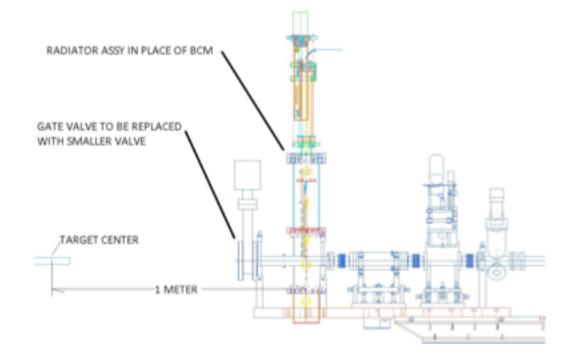

Coils for polarized ³He will run into end of last girder when rotated to certain configurations

- → End of girder will need to be cut off
- → Requires relocation of MPS BCM

Originally, planned to accomplish both summer, 2018 as part of preparations for E12-16-007

- → Due to short summer down, limited ENG availability, will only move MPS BCM (install radiator)
- \rightarrow Girder will be cut later

Beamline Modifications for Polarized ³He

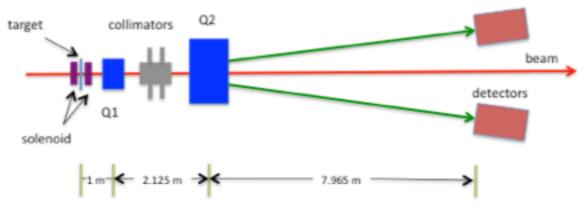

Beamline Modifications for Polarized ³He

E12-16-007 will require use of a new radiator

→ Radiator will be installed as last element on Hall

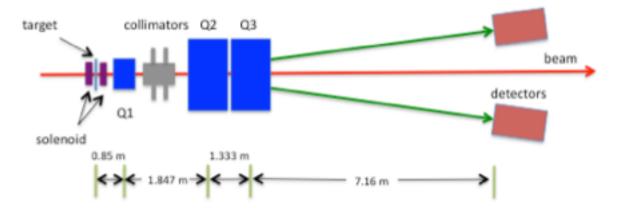
C diagnostic girder

- → MPS BCM will be relocated upstream
- → Cutting off end of diagnostic girder would have required other mods to accommodate radiator

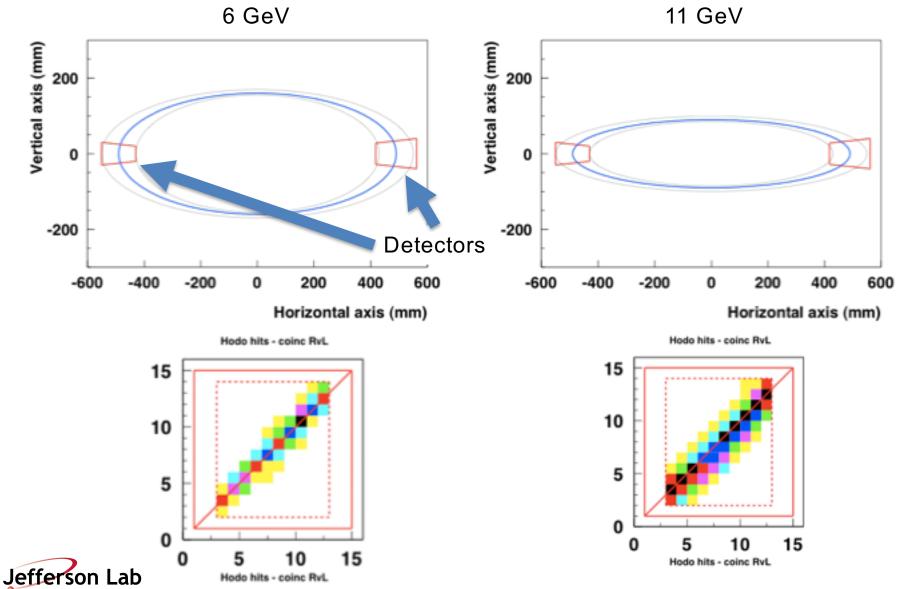


Engineering will relocate MPS BCM Summer 2018 (done) → Remaining mods will be done as part of A1n/d2n installation

Møller Polarimeter – New layout


6 GeV

Additional large quad required to steer electrons to detectors


→ Even with new quad, some compromise had to be made with respect to polarimeter optics

11 GeV

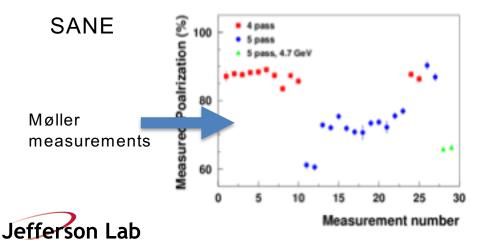
Møller Polarimeter – New optics

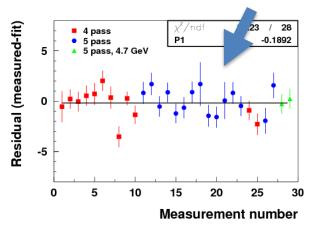
Expected Møller Performance at 11 GeV

Monte Carlo studies by Kamilah Walker – Phoebus High School

Source	Uncertainty	dA/A (%)		Average	
Beam x position	0.5 mm	0.058	0.103	0.081	
Beam y position	0.5 mm	0.000	0.045	0.023	
Beam x angle	0.5mradians	-0.039	0.289	0.125	
Beam y angle	0.5mradians	0.039	0.116	0.078	
Q1 current	2.00%	0.077	0.129	0.103	
Q3 (and Q2) current	2.50%	-0.019	0.411	0.196	
Q1 position	1 mm	-0.008	-0.008	-0.008	
Q3 position	1 mm	0.000	0.000	0.000	
Multiple scattering	10.00%	0.064	0.064	0.064	
Radiative corrections	10.00%	-0.022	-0.022	-0.022	
Levchuk effect	10.00%	0.295	0.295	0.295	
Collimator positions	0.5 mm	0.088	0.088	0.088	
Solenoid focusing	100.00%	0.013	0.013	0.013	
Solenoid position	0.5 mm	-0.006	-0.006	-0.006	Tatal as sate as atta
Constant sources of unc.					Total systematic error comparable
Target temperature	100.00%	0.14	0.14	0.14	to Q-Weak
B-field direction	2 deg.	0.14	0.14	0.14	
B-field strength	5.00%	0.03	0.03	0.03	
	5.00%	0.05	0.05	0.05	
Spin polarization in iron Electronic DT	100.00%		0.25	0.04	
	100.00%	0.04			
High current extrapolation		0.5	0.5	0.5	
Monte Carlo statistics		0.12	0.12		
Total		0.69	0.87	0.74	

Møller Polarimetry – Precision and Strategy


Precision of Møller measurements expected to be < 1%


→ Time dependence of beam polarization also needs to be tracked in between intermittent Møller measurements

Polarization changes mostly come from:

- Changes at source → Spot at photocathode, heat-and-reactivation, quantum efficiency
- 2. Changes in beam energy \rightarrow change spin precession and spin direction at hall

We can keep track of and correct for these effects

Residuals from fit to Møller data

Møller Polarimetry - Spin Precession and Beam Energy

At higher energies, we are more sensitive to spin precession

- → If Wien angle set for maximum polarization in Hall C, a 10⁻⁴ change in beam energy results in <0.1% change in polarization</p>
- → If Wien set for 90% of maximum polarization, then 10⁻⁴ energy change results in 1.6% change in polarization

Hall	Pass	Horizontal	LINAC	Final	Horizontal	Modulo	Within	Wien	Net	Fraction of
		Bends		Energy	Precession	360 deg	+/- 90	Angle	Precession	Polarization
		#	MeV	MeV	deg	deg	deg	deg	deg	#
А	1	68	1050	2218.36	666.09	306.09	-53.91	53.91	0.00	1.0000
			0.25%	2223.36	667.54	307.54	-52.46	52.46	0.00	1.0000
в	5	452	1050	10575.72	19705.81	265.81	85.81	53.91	139.72	-0.7629
			0.25%	10600.32	19751.48	311.48	-48.52	52.46	3.94	0.9976
с	5	460	1050	10573.25	18805.41	85.41	85.41	53.91	139.32	-0.7584
			0.25%	10597.82	18848.98	128.98	-51.02	52.46	1.44	0.9997

Spin precession calculations from Joe Grames/Yves Roblin

At "nominal" 10.6 GeV energy, Hall C receives ~76% of maximum when Wien optimized for Hall A

 \rightarrow Increasing linac energy 0.25% results in ~100% for all halls

Jefferson Lab

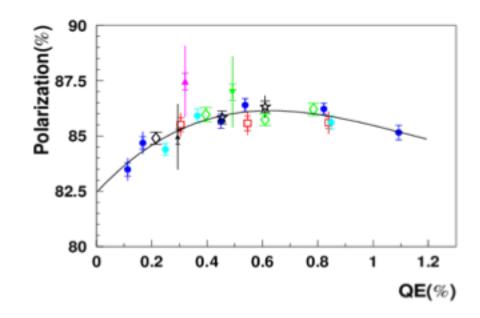
Møller Polarimeter Tasks

- Plan to use Møller for Fall 2018 run for Hall C SIDIS experiments
- Møller quadrupoles have already been used as part of Hall C beamline optics
- Tasks to get Møller ready
 - Test cooldown, verify cryo system controls; Spring 2018
 Fall 2018; Hall C + Cryo
 - Connect new power supply to upgraded AC distribution in hall; Summer 2018; Hall C + Lab Electricians
 - Check out detectors repair if needed; Summer 2018; Hall
 - Install shielding near beamline and detectors; Summer 2018; Hall C
 - Revive DAQ; Summer 2018; Hall C
- New Møller OSP has been reviewed and approved

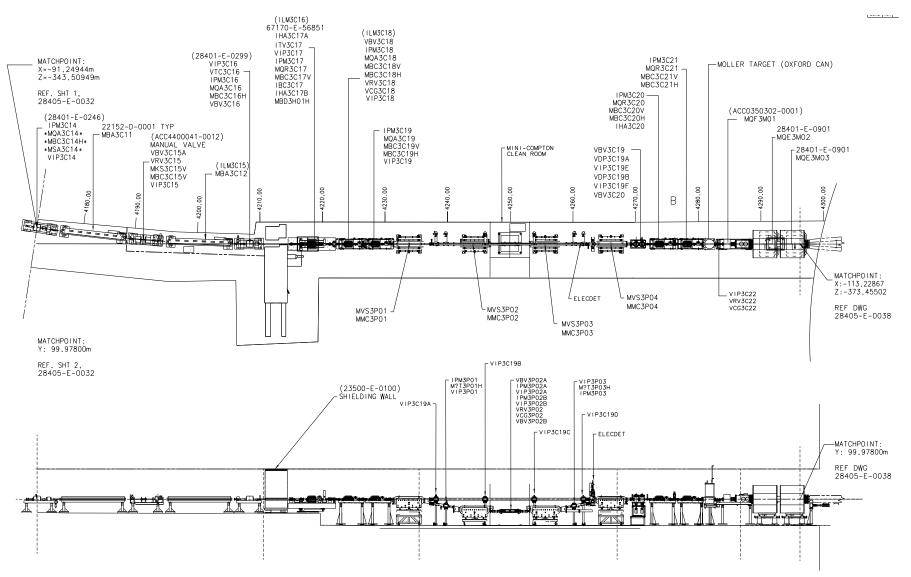
Møller Analyzer

- Existing Møller analyzer has been in use since 1990's → FORTRAN/HBOOK based
- Some work was done in 2010 to try and port the analyzer to C++/Root
 - This was partially completed (could analyze scaler data, but not ADCs/TDCs), but never finished or used for production data
 - − C++/Root port used Q-Weak analysis framework → lots of extra, unnecessary stuff comes along with that
- Would like an analyzer based on "modern" language, but minimizing dependence on other, large packages
- Michael Berkowitz (Grad student Columbia) will start looking at this as time allows (low priority task)

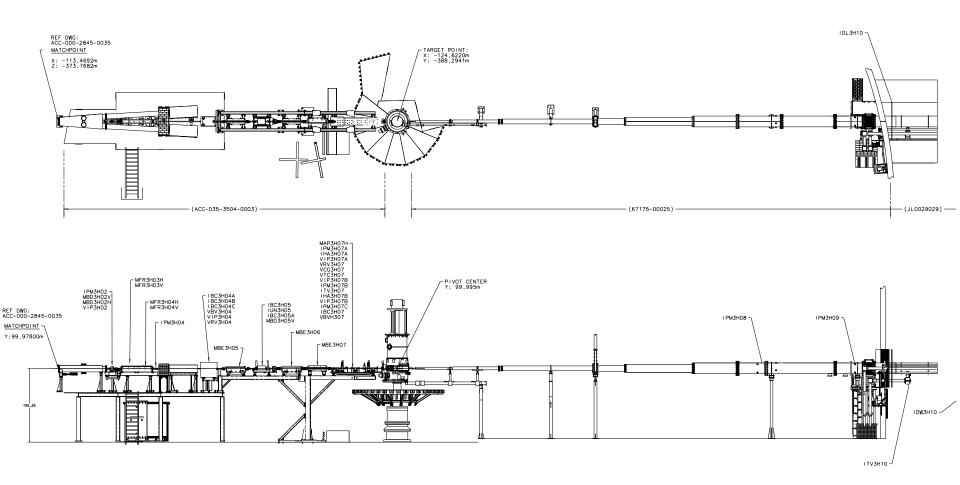
Summary


- Hall C beamline modifications have begun, but last girder will still need work summer of 2019
- Møller polarimeter expected to provide measurements with <1% precision
 - Will need to track source configuration, beam energy to provide polarization between Møller measurements
- Increased sensitivity to beam energy means we can't be too far from optimum Wien angle for Hall C

Polarization Dependence on QE



Measured QE dependence from GEp, GEp-2gamma


- → Similar QE dependence observed during Q-Weak, Run-1
- → Q-Weak, Run2: larger laser spot used at photocathode no measurable QE dependence

Hall C Songsheet – Green wall to Hall

Hall C Songsheet - Hall

