A₁ⁿ Experiment Overview

Xiaochao Zheng, University of Virginia (spokespeople: Gordon Cates, Jianping Chen, Zein-Eddine Meziani, Xiaochao Zheng

- Physics of A1n in the far-valence domain
- Experimental Requirements
- Kinematics and expected results

Predictions for A_1 and $\Delta q/q$ at large x

The far valence domain (x>0.5)

- is definitive of the hadrons
- is the only domain where QCD (and many other models) can make absolute predictions for structure functions

Model	F_{2}^{n}/F_{2}^{p}	d/u	∆ u/u	Δ d/d	A_1^n	A ₁ ^p
SU(6) = SU3 flavor + $SU2$ spin	2/3	1/2	2/3	-1/3	0	5/9
Valence Quark + Hyperfine	1/4	0	1	-1/3	1	1
pQCD + HHC	3/7	1/5	1	1	1	1
DSE-1	0.49	0.28	0.65	-0.26	0.17	0.59
DSE-2	0.41	0.18	0.88	-0.33	0.34	0.88

The 6 GeV Hall A Measurement (21 PAC days, 2001)

A1n Running Conditions

- First experiment to require polarized beam in Hall C after the upgrade: 85% requested, (minimum 80%), measured to 2%; transverse beam polarization < 1% desired.</p>
- $\hfill a$ Beam size no larger than 300 μm in σ , 200 μm in σ desired.
- I1 GeV (min 10.5 GeV), 30 μA, beam trip goal: (6-10) per hour or less
- circular rastering of beam spot to a radius of 2.5 mm and "no hot spot", current ramping at (0.5-1.0) μA/sec on polarized target cell;
- changing beam IHWP status every 12 hours or at least half-way of each kinematics;
- beam charge asymmetry controlled to under 200ppm (average over each run);
- First time to use polarized 3He target in Hall C: Stage-I target upgrade: 12amg, 40cm, 30uA, Pt=(55-60)%; 3% polarimetry
- Both longitudinal and transverse spin configurations; spin direction known to ±0.5 degree desired and ±1.0 degree required; density known to 3% (2% from fill density and 2% from operating temperature).
- Q² known to 1% desired (Ebeam at the ±1E-3 level; spectrometer momentum to ±1E-3, angle to ±0.06 deg).
- PID performance: pion rejection > 10,000 desired by combining calorimeter and Cherenkov, > 5000 required, while keeping electron efficiency at 99% (desired) or 95% (min) each (worst case at SHMS momentum 2.25 GeV/c and HMS 2.82 GeV/c).

A1ⁿ Kinematics and Production Beam Time (previous)

Kine	E_b		θ	E_p	e^- production	e^+ prod.	Tot. Time		
	(GeV)		(°)	(GeV)	(hours)	(hours)	(hours)		
		-		D	IS	-		· 	
1	11.0	HMS	12.5	5.70	12	0	12		
2	11.0	HMS	12.5	6.80	24	0	24		
3	11.0	HMS	30.0	2.82	96	0	96	both	
4	11.0	HMS	30.0	3.50	551	1	552	A_{\parallel}	
А	11.0	SHMS	12.5	5.80	36	0	36	and	
В	11.0	SHMS	30.0	3.00	464	0	464	A_{\perp}	
С	11.0	SHMS	30.0	2.25	88	0	88		
Resonances									
D	11.0	SHMS	12.5	7.50	96	0	96		

Kine	E_b	E_p	θ	elastic x-sec	elastic	Asymmetry	Time	_
	GeV	GeV	$(^{\circ})$	(nb/sr)	rate (Hz)		(hours)	
Elastic	2.200	2.160	12.5	106.986	1293.9	$A_{\parallel} = 0.0589$	11.2	
$\Delta(1232)$	2.200	1.815	12.5	-	-	$A_{\perp} \sim a \text{ few } \%$	6	
	-							

A1ⁿ Kinematics and Production Beam Time (updated)

	_	Kine	E_b		θ	E_p	$e^- \operatorname{prod}$	uction	e^+ prod.	Tot. Time
🧧 Ebeam;			(GeV)		$(^{\circ})$	(GeV)	(hou	rs)	(hours)	(hours)
same beam time for a same beam time	or _					Γ	DIS			
HMS vs. SHMS fo	or	1	11.0	HMS	12.5	5.70	12		0	12
the large angle		2	11.0	HMS	12.5	6.80	24		0	24
running		3	11.0	HMS	30.0	2.82	96		0	96
n0 cotting	_	4	11.0	HMS	30.0	3.50	55	1	1	552
• po sering		А	11.0	SHMS	12.5	5.80	36		0	36
optimized using		В	11.0	SHMS	30.0	3.00	464	1	0	464
latest simulations	_	С	11.0	SHMS	30.0	2.25	88		0	88
	Resonances									
Elastic/Delta (not)	_	D	11.0	SHMS	12.5	7.50	96		0	96
shown here):										
Ebeam=2.05 GeV			Ebeam					e- pr	oduction	e+
no other change	Kine	e	(GeV)	Spec		p0	θ0	time	e (hours)	(hours)
	1		10.5	HMS	5	5.7	12.5		12.0	0.0
	2		10.5	HMS	ò	6.8	12.5		24.0	0.0
	3		10.5	HMS		2.9	30.0		88.0	1.0
	4		10.5	HMS	5	3.5	30.0	E	511.0	1.0
	Α		10.5	SHM	S	5.8	12.5		36.0	0.0
	В		10.5	SHM	S	3.4	30.0	Ę	511.0	0.0
	С		10.5	SHM	S	2.4	30.0		88.0	0.0
	D		10.5	SHM	S	7.5	12.5		96.0	0.9

A1n/d2n Collaboration Meeting

Backup Slides

ERR Status

- Review occurred on March 19th, this year;
- weekly meeting since then to address the review comments/report, most time spent on target (beam) thermal stress calculation, target field gradient calculation, etc
- beam time request submitted by end of May;
- Plan to send reply to comments by end of this month.

Total Beam Time Allocation (ERR)

- Run-group A1n/d2n commissioning of the beamline, target, and spectrometers: 3 PAC days or 72 PAC hours (not including initial Moller commissioning)
- 1-pass elastic PbPt and Δ transverse asymmetries: 14 PAC hours (incl N2 runs);
- optics: 8 PAC hours;
- Moller: at least 3 measurements at 11 GeV (10 PAC hrs), one at 2.2 GeV (6 PAC hrs).
- beam pass change from 2.2 to 11 GeV: 8 PAC hours
- Production: DIS 636 PAC hours, RES 48 PAC hours (2-arms equivalent)
- Reference cell runs (N₂, ³He, H₂ and empty): 12 PAC hours (2hr each at kine#1 and #2 or #A and #D, 4hr each at #3 and #4 or #B and #C)
- Configuration changes: 12x0.5 PAC hrs (angle or momentum or target spin directions), 8 PAC hrs polarity, 14 PAC hours total
- Target polarization measurements: 4% of production, 28 PAC hours total
- Total beam time: 36 PAC days

A₁ⁿ Uncertainties (ERR)

Table 3: Projected statistical and systematic uncertainties for DIS data at different x and Q^2 . As a comparison, the 6 GeV result at x = 0.61 was $A_1^n = +0.175 \pm 0.048(\text{stat.})^{+0.026}_{-0.028}(\text{syst.})$. And the 2010 proposed values are $\Delta A_1^n(\text{stat.}) = 0.0288$ and $\Delta A_1^n(\text{total}) = 0.0446$.

x	ΔA_1^n (stat.)	ΔA_1^n (stat.)	ΔA_1^n (stat.)	$\Delta A_1^n(\text{syst.})$	ΔA_1^n (total)
	low Q^2	high Q^2	two Q^2 combined		
0.25	0.0034	—	0.0034	0.0131	0.0135
0.30	0.0037	—	0.0037	0.0130	0.0135
0.35	0.0048	0.0157	0.0046	0.0129	0.0137
0.40	0.0062	0.0159	0.0058	0.0134	0.0146
0.45	0.0085	0.0123	0.0070	0.0138	0.0154
0.50	0.0124	0.0112	0.0083	0.0146	0.0168
0.55	_	0.0122	0.0107	0.0159	0.0192
0.60	_	0.0135	0.0134	0.0180	0.0224
0.65	_	0.0157	0.0157	0.0217	0.0268
0.71	_	0.0189	0.0189	0.0254	0.0316
0.77	_	0.0346	0.0346	0.0325	0.0475

Break-down of Uncertainties (ERR)

Table 4: Projected statistical and systematic uncertainties for resonance data at different x and Q^2 . Resonance data will be taken at a scattering angle of 12.5° (same as the low Q^2 DIS data). The DIS fit for A_1 was used in the systematic uncertainty study.

x	ΔA_1^n (stat.)	$\Delta A_1^n(\text{syst.})$	ΔA_1^n (total)
0.55	0.0180	0.0171	0.0249
0.60	0.0171	0.0198	0.0261
0.65	0.0158	0.0215	0.0266
0.71	0.0269	0.0279	0.0388
0.77	0.0371	0.0362	0.0518
0.83	0.0505	0.0476	0.0694
0.89	0.0310	0.0678	0.0746

A_1^n Kinematics - x, W, and background estimation

	Kine	E_b	E_p	θ	(e, e')	π^{-}/e	e^+/e^-	$x (Q^2, \text{ in GeV}^2) (W, \text{ in GeV})$		
		GeV	GeV	(°)	rate (Hz)			coverages		
	DIS									
1	HMS	11.0	5.70	12.5	575.42	< 0.4	< 0.1%	0.25 - 0.55 (2.59 - 4.40) (2.1 - 2.9)		
2	HMS	11.0	6.80	12.5	426.14	< 0.2	< 0.1%	0.25 - 0.60 (2.43 - 4.53) (2.0 - 2.9)		
3	HMS	11.0	2.82	30.0	2.69	< 10.7	< 0.1%	0.40-0.71 ($6.55-10.19$) ($2.2-3.3$)		
4	HMS	11.0	3.50	30.0	0.74	< 2.4	< 0.1%	0.50-0.77 ($7.72-10.60$) ($2.0-2.9$)		
А	SHMS	11.0	5.80	12.5	701.73	< 0.5	< 0.1%	0.25 - 0.60 (2.64 - 4.42) (2.0 - 3.0)		
В	SHMS	11.0	3.00	30.0	2.70	< 12.2	< 0.1%	0.40-0.77 ($6.63-10.54$) ($2.0-3.3$)		
С	SHMS	11.0	2.25	30.0	6.96	< 91.0	< 0.1%	0.25 - 0.65 (4.71 - 9.49) (2.4 - 3.9)		
	Resonances									
D	SHMS	11.0	7.50	12.5	104.79	_	_	0.50-1.00 (3.12-4.45) (0.9-2.0)		

Size of Measured Asymmetries from 6 GeV

Table 6.1: ³He results $-A_{\parallel}^{^{3}\text{He}}$ and $A_{\perp}^{^{3}\text{He}}$.

x	Q^2	$A_{\parallel}^{^{3}\mathrm{He}}\pm\mathrm{stat.}\pm\mathrm{sys.}$	$A_{\perp}^{^{3}\mathrm{He}}\pm\mathrm{stat.}\pm\mathrm{sys.}$
0.327	2.709	$-0.01397 \pm 0.00475 \pm 0.00071$	$-0.00216 \pm 0.00955 \pm 0.00011$
0.466	3.516	$-0.00722 \pm 0.00449 \pm 0.00036$	$0.01359 \pm 0.00790 \pm 0.00069$
0.601	4.833	$0.01036 \pm 0.00739 \pm 0.00052$	$-0.01173 \pm 0.01550 \pm 0.00059$

Figure 6-10: Pion asymmetry A^{π^-} results.

June 15th, 2018

A1n/d2n Collaboration N

Beam Transverse
Polarization

$$I_{\text{transverse beam spin}} \text{ is suppressed by } \gamma e$$

$$A_{\parallel}^{Ilab} = \frac{\frac{d^2\sigma}{d\Omega dE'} \swarrow (1 - \frac{d^2\sigma}{d\Omega dE'}) \land (1$$

June 15th, 2018

A1n/d2n Collaboration Meeting

Requirement on target angle

A1n analysis is dominated by $A_{||}$, which is less sensitive to the target field angle than Aperp:

$$\left(\frac{\Delta\sigma_{pol}}{\sigma_{pol}}\right)_{\alpha=0+\delta\alpha} = (\delta\alpha) \frac{E'\sin\theta}{\frac{g_1}{g_2} \left(yE + \frac{1}{2xM} \left[v - (E - E'\cos\theta)\right] (E - E'\cos\theta)\right] + \left[yE - (E - E'\cos\theta)\right]}$$

$$\left(\frac{\Delta\sigma_{pol}}{\sigma_{pol}}\right)_{\alpha=\frac{\pi}{2}+\delta\alpha} = (\delta\alpha)\frac{\frac{g_1}{g_2}\left(2xyE - \frac{1}{M}\left[\nu - (E - E'\cos\theta)\right](E - E'\cos\theta)\right] + 2xyE - 2x(E - E'\cos\theta)}{2xE'\sin\theta}$$

Requirement on Q^2

- dilution relative cross sections
- kinematic variables used to extract $A_{1,2}$ from measured asymmetries
- $F_{1,2}$ (p, n, 3He) used in nuclear corrections
- A_1^p , PDF (d/u) used in extracting $\Delta q/q$