Probing the Spin Structure of the Neutron:

E12-06-121: d₂ and g₂ for the Neutron

Spokespeople: T. Averett, W. Korsch, Z.E. Meziani, B. Sawatzky

> Brad Sawatzky Jefferson Lab

E12-06-121: d_2^n , g_2^n

- Directly measure the Q² dependence of the neutron $d_2^{n}(Q^2)$ at $Q^2 \approx 3, 4, 5, 6 \text{ GeV}^2$ with the new polarized ³He target. \rightarrow The new Hall C SHMS is ideally suited to this task!
- Doubles number of precision data points for $g_2^n(x, Q^2)$ in DIS region.

 \rightarrow Q² evolution of g_2^n over (0.23 < x < 0.85)

- d, is a clean probe of quark-gluon correlations / higher twist effects
- Connected to the *color Lorentz force* acting on the struck quark (Burkardt)
 - \rightarrow same underlying physics as in SIDIS k_1 studies
- Investigate the present discrepancy between data and theories.

E12-06-121: d_2^n , g_2^n

- <u>Hall C: SHMS + HMS</u>
- Two beam energies:
 - \rightarrow 11 GeV/c (production)
 - \rightarrow 2.2 GeV/c (calib.)
- Beam Current
 - \rightarrow 30 uA (production)
 - \rightarrow 45 uA (max, I calib.)
- Target: 40 cm Polarized ³He
- Each arm measures an <u>absolute</u> <u>polarized cross section</u> independent of the other arm

$$(g_1, g_2)$$

 $\rightarrow d_2(Q^2) = \int_0^1 x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)] dx$

- SHMS collects data at
 - $\rightarrow \Theta = 11^{\circ}, 13.3^{\circ}, 15.5^{\circ} \text{ and } 18.0^{\circ} \text{ for } 125 \text{ hrs each}$
 - \rightarrow data from each setting divided into 4 bins
- HMS collects data at

 $\rightarrow \Theta = 13.5^{\circ}$, 16.4°, 20.0° and 25.0° for 125 hrs each

SHN	AS Produc	tion	HMS Production				
Setting	P ₀	Angle	Setting	P ₀	Angle		
А	7.5	11.0°	A'	4.3	13.5°		
В	7.0	13.3°	В'	5.1	16.4°		
С	6.3	15.5°	C'	4.0	20.0°		
D	5.6	18.0°	D'	2.5	25.0°		

Projected results for E12-06-121

Thomas Jefferson National Accelerator Facility A1n/d2n Collaboration Meeting – June 15, 2018

Jefferson Lab

.

Standard Hall C Detector Packages

- SHMS ('default' detector package)
 - → Hodoscopes, Wire chambers, NGC, Calorimeter
 - → HGC tank remains installed: may pump to vacuum, or fill with Argon for auxiliary PID
- HMS ('default' detector package)

 → Hodoscopes, Wire chambers, Calorimeter
 → HGC fill with Argon, or C₄F₁₀ (sub-atmosphere)
- DAQs
 - \rightarrow Standard DAQ and triggers
- See also: <u>Spectrometer and Detector Systems talk</u>

Nominal Beam Requirements

- Beam Characteristics
 - » See 'Performance Requirements' slide in <u>A1n overview and running conditions</u> for general shared requirements.
 - \rightarrow 1-pass, 5-pass requested (see upcoming slide for more details)
 - \rightarrow Beam polarization: 80%
 - \rightarrow < 50 ppm charge asym (average over ~ 1–2 hr run)
 - \rightarrow 30 uA (max) on glass cell targets
 - \rightarrow 30 uA (max) on solid targets

Nominal Target Requirements

- Polarized ³He Target Requirements
 - » See 'Performance Requirements' slide in <u>A1n overview and running conditions</u> for general shared target requirements.
 - \rightarrow 55% polarization
 - \rightarrow 30 uA beam current capability
 - $\rightarrow \sim 0.1$ spin angle measurement (2 mrad)
 - » Challenging, but achievable
- Target Ladder components
 - \rightarrow Polarized ³He production cell (40cm)
 - \rightarrow Reference cell:
 - » vacuum, H₂, ³He, Nitrogen
 - \rightarrow Optics foils (7)
 - \rightarrow Single-carbon foil
 - \rightarrow Carbon-hole (alignment, raster checks)

Beam Time Allocation

 \rightarrow 5-pass beam (nominal 11.0 GeV/c) for ~ 676 PAC hours \rightarrow 1-pass beam (nominal 2.2 GeV/c) for ~ 20 PAC hours + pass change \rightarrow 5-pass » [*] \sim 20 calibration hours include data to be shared w/ A1n (elastics, optics, etc.) 1-pass Running (Calibrations) [~20 PAC hours] \rightarrow Optics [2 PAC hours*] \rightarrow H(e,e'p) elastics, C, ³He elastic, QE calibrations [15 PAC hours*] [2 PAC hours*] \rightarrow BCM, BPM calibrations Pass change $1 \rightarrow 5$ [~4 PAC hours*] 5-pass Running (Production) [~676 PAC hours] \rightarrow Production [~600 PAC hours] [18 PAC hours] \rightarrow Optics , BCM, Misc. \rightarrow Target polarization measurements (4% of production) [24 PAC hours] \rightarrow Reference cell runs (N₂, ³He, vacuum) [8 PAC hours]

PAC 36 approved E12-06-121 for requested 700 PAC hours (29 PAC days)

 \rightarrow Positive polarity

Jefferson Lab

 \rightarrow Moller measurements (x4)

[16 PAC hours]

[12 PAC hours]

Analysis Readiness

- Software needed for analysis is already in place
 - \rightarrow HCANA
 - » ROOT based online and offline analysis package
 - » New analyzer cross-checked against old ENGINE analyzer using old HMS data
 - » Same analysis engine used for experiments on the floor now
 - → Get thy students to the Analysis Workshop!
- Simulations / Acceptance codes available
 - \rightarrow SIMC, SAMC
- Radiative Corrections
 - \rightarrow Same process as used for E06-014, updated for new kinematics
 - \rightarrow Toolkit already in place

Thomas Jefferson National Accelerator Facility A1n/d2n Collaboration Meeting – June 15, 2018) 🔞

- \rightarrow Basically same process as used in 2008/9.
- $3\text{He} \rightarrow \text{neutron corrections}$
 - → In place for lower-x data, need additional support for high-x data
 - → Methodology is available, will to work with Wally Melnitchouk et al. to finalize.
- General Analysis templates available from E06-014 (and others)
 - → Provides a clear analysis path from data w/ lessons learned for similar measurement.

Items to Develop in Advance

- Resurrect rate / yield codes
 - → Needed to tune / cross check earlier rate estimates, and optimize for final beam energy
 - » Wolfgang?
- Radiative Corrections
 - \rightarrow Same process as used for E06-014
 - → Resurrect that code and have it ready to go (could be good coding/analysis exercise for student!)
 - » Zein-Eddine?

- Air compass development
 » Wolfgang?
- $^{3}\text{He} \rightarrow \text{neutron corrections}$
 - → Contact Wally Melnitchouk et al. and develop the extraction method for our conditions
- Update Theory motivations/ predictions

 \rightarrow New LQCD calculation?

 $\rightarrow ???$

»

»

Analysis Flow Chart / Timeline

(promises made at ERR...)

(Above) Figure 8.1(modified) from M. PosikE06-014 (d2n 2009) dissertation

Thomas Jefferson National Accelerator Facility A1n/d2n Collaboration Meeting – June 15, 2018

Rough Milestones

- 2 months
 - \rightarrow Screen run list
 - \rightarrow Establish analysis framework
 - \rightarrow Detector calibrations
- 4 months
 - \rightarrow Final optics, good PID
 - \rightarrow Target polarimetry analysis
- 6 months
 - \rightarrow Acceptance calculations
 - → Finalize target polarimetery
 - → Begin 'applied' work on necessary nuclear corrections (w/ Theory support)
- 12 months
 - → Begin Rad. Correction analysis
 - \rightarrow Initial 3He cross section extractions
- 18 months
 - \rightarrow Finalize Rad. Corrections
 - \rightarrow Finalize Nuclear corrections
 - → Finalize Systematics
 - Target first short paper: 18 months
- Long paper:

30 months

Analysis Personnel for E12-121 (Preliminary)

- Z.E. Meziani (Temple U.)
 - \rightarrow PostDoc
 - → Grad Student (Shuo Gia)
- W. Korsch (U. of Kentucky) → Grad Student (TBD)
- T. Averett (William & Mary)
 → Grad Student (Junhao Chen)
- B. Sawatzky (JLab)

Backup Slides

Thomas Jefferson National Accelerator Facility A1n/d2n Collaboration Meeting – June 15, 2018

Analysis Timeline

- E06-014 analysis allowed us to establish procedures and software tools that will significantly accelerate analysis of E12-06-121
 - → Three excellent dissertations that provide a roadmap with lessons-learned for future analyses.
 - → Radiative corrections were time consuming for E06-014. This framework now exists and can be extended for new measurement.
- E06-014 involved understanding a new, open-geometry detector package (BigBite). This was a big job and consumed a lot of time.
 - → E12-06-121 involves two high-precision 'standard' spectrometers that should be well understood by the time the Pol. 3He group runs.
 - → Both SHMS & HMS are standard equipment with a solid analysis toolkit already developed.

Supporting Documentation

- Supporting Documentation
 - \rightarrow <u>PAC30 Proposal</u>
 - → <u>PAC36 Update</u>
- Polarized ³He ERR Page <u>Supporting Documentation</u>
- <u>E06-014 (2009 d2n Exp.) Wiki</u>

Thomas Jefferson National Accelerator Facility A1n/d2n Collaboration Meeting – June 15, 2018

Excellent Analysis 'Templates' from E06-014

- E06-014 ran in Hall A 2009
 - → Extracted d2n, g1n, g2n using very similar equipment and analysis methodology
 - → Experience and documented procedures will be invaluable
- PhD Dissertations / Analysis 'road-maps':
 - \rightarrow <u>D. Flay dissertation</u> (Temple U.)
 - \rightarrow <u>D. Parno dissertation</u> (CMU)
 - \rightarrow <u>M. Posik dissertation</u> (Temple U.)

Fallback / Contingency Plans

- » ~200 hours for each pair
- Worst case:

lacksquare

- →Fall back to these params and we still have a viable measurement.
- See also:
 - → Section 5 of <u>PAC36 Update</u> (last few paragraphs)

18

Magnetic Field Direction

Longitudinal Field: - air floating compass (left) - needle compass (above) $\Delta \Theta < 2 \text{ mrad } (< 0.1 \text{ degree})$

Transverse Field: - air floating compass (left) $\Delta \theta \sim 1 \text{ mrad} (\sim 0.05 \text{ degree})$

> A. Kolarkar, Ph.D. Thesis, UKy, 2008 C. Dutta, Ph. D. Thesis, UKy, 2010

Production Kinematics for HMS

Table	e 4: Exp	pected ra	tes for the	e three H	IMS setti	ings. The	uncertain	ties for	A_{\parallel} and	$d A_{\perp}$ are s	statistical	only.
	θ_0	E'_{cent}	Q ²	X	W	e ⁻ rate	π^- rate	t	t_{\perp}	ΔA_{\parallel}	ΔA_{\perp}	j
	[0]	[GeV]	[GeV ²]		[GeV]	[Hz]	[Hz]	[hrs]	[hrs]	$[\cdot 10^{-4}]$	$[\cdot 10^{-4}]$	
	13.5	4.305	2.617	0.208	3.293	954	765	8	117	2.0	0.6	
	16.4	5.088	4.555	0.410	2.727	218	15	12	113	3.9	1.2	
	20.0	4.000	5.31	0.404	2.951	76	66	10	115	6.0	1.8	
	25.0	2.500	5.15	0.323	3.417	20	84	13	112	10.7	3.1	

• Rate table from PAC36

- \rightarrow 30 uA beam
- \rightarrow 55% polarization
- \rightarrow Assumed 60 cm long cell
- Current target
 - \rightarrow 40 cm long cell
- As discussed in the PAC36 update, we have been conservative on our statistical run times and are not statistics limited, even with the shorter production cell.

Production Kinematics for SHMS

Table 3: Kinematic bins and expected rates for the SHMS. The uncertainties for A_{\parallel} and A_{\perp} are *statistical* only.

SHMS	E' _{bin}	Q ²	X	W	e ⁻ rate	π^- rate	t _{ll}	t⊥	ΔA_{\parallel}	ΔA_{\perp}
Setting	[GeV]	[GeV ²]		[GeV]	[Hz]	[Hz]	[hrs]	[hrs]	$[\cdot 10^{-4}]$	[.10 ⁻⁴]
$\theta_0 = 11^\circ$	7.112	2.875	0.394	2.305	1058	11	12	113	2.0	0.5
	7.709	3.116	0.504	1.988	708	3.1	12	113	2.3	0.7
$E'_{cent} = 7.5$	8.304	3.357	0.663	1.610	259	0.83	12	113	3.7	0.1
GeV	8.900	3.597	0.912	1.109	2.7	0.21	12	113	36	10
$\theta_0 = 13.3^{\circ}$	6.647	3.922	0.480	2.267	268	3.1	12	113	3.5	1.0
	7.203	4.250	0.596	1.941	139	0.8	12	113	4.8	1.5
$E'_{cent} = 7.0$	7.758	4.578	0.752	1.548	31.6	0.16	12	113	10	3.1
GeV	8.314	4.906	0.972	1.012	0.10	0.033	12	113	173	55
$\theta_0 = 15.5^\circ$	5.997	4.798	0.511	2.342	96	1.9	12	113	5.7	1.8
	6.496	5.197	0.614	2.037	49	0.47	12	113	7.8	2.5
$E'_{cent} = 6.3$	6.995	5.597	0.744	1.677	13.5	0.11	12	113	15	4.7
GeV	7.494	5.996	0.911	1.215	0.29	0.025	12	113	98	33
$\theta_0 = 18.0^\circ$	5.348	5.756	0.542	2.397	35	1.1	12	113	9.5	3.1
	5.790	6.235	0.637	2.106	17	0.25	12	113	13	4.4
$E'_{cent} = 5.6$	6.233	6.711	0.749	1.769	5.1	0.05	12	113	24	8.1
GeV	6.675	7.187	0.885	1.350	0.38	0.01	12	113	87	30

- Table from PAC36 update
 - \rightarrow Same considerations as noted on prior slide apply.

Systematic Error Table

Item description	Subitem description	Relative uncertainty
Target polarization		1.5 %
Beam polarization		3 %
Asymmetry (raw)		
	 Target spin direction (0.1°) 	$< 5 imes 10^{-4}$
Cross section (raw)	Beam charge asymmetry	< 50 ppm
	• PID efficiency	< 1 %
	Background Rejection efficiency	≈1%
	• Beam charge	< 1 %
	Beam position	< 1 %
	Acceptance cut	2-3 %
	 Target density 	< 2%
	 Nitrogen dilution 	< 1 %
	Dead time	< 1%
	• Finite Acceptance cut	<1%
Radiative corrections		\leq 5 %
From ³ He to Neutron correction		5 %
Total systematic uncertainty (for both $g_2^n(x, Q^2)$	and $d_2(Q^2))$	≤ 10 %
Estimate of contributions to <i>d</i> ₂ from unmeasured region	$\int_{0.003}^{0.23} \tilde{d}_2^n dx$	4.8×10^{-4}
Projected absolute statistical uncertainty on d_2		$\Delta d_2 \approx 5 \times 10^{-4}$
Projected absolute systematic uncertainty on d_2 (<i>assuming</i> $d_2 = 5 \times 10^{-3}$)		$\Delta d_2 \approx 5 \times 10^{-4}$

- PREx-II, CREx ERR accepted < 0.1 ppm Charge Asym requirement as achievable
- Target spin direction precision achievable (see backup slide)

or Facility

e 15, 2018

