Timelike Compton Scattering off a transversely polarized proton

1) Motivations

- 2) Experimental setup
- 3) Projections
- 4) Beam time request

Marie Boër, Dustin Keller, Vardan Tadevosyan and the NPS collaboration JLab PAC 46, July 16, 2018

Timelike and Spacelike Deeply Virtual Compton Scattering

Some interpretations of GPDs:

- ⇒ Tomographic views of nucleon with x-dependent impact parameter distributions
- \Rightarrow Parton's angular momenta with first moment in x of H and E

Lepton pair photoproduction

Transversely polarized target spin asymmetries

Sensitive to Im part of amplitudes

- \rightarrow BH cancels for single spin asymmetries
- \rightarrow reflect interference between TCS and BH
- \rightarrow access Im(\mathcal{H}), Im(\mathcal{H}), Im(\mathcal{H})

Compton Form Factors from DVCS and TCS

Extracted CFF uncertainties for DVCS, TCS, various sets of observables

CFFs from TCS at same level than DVCS

 $Im(\mathcal{E})$ extracted thanks to transverse target

Interpretation of extracted CFFs:

- global fits \rightarrow if small higher twist
- GPD universality \rightarrow if small/medium higher twist
- observation of higher twist spacelike/timelike
- Higher twists: opposite direction in DVCS vs TCS
 % level effect on Im part, ~10% on Re part of
 extracted CFFs → lower than CFF uncertainties

Fits of CFFs from DVCS and TCS obs., same (ξ =.1, -t=.2GeV²), leading twist/order CFFs = functions of GPDs, H \rightarrow Im(H), Re(H) Pseudo-data: 5% error (unpol) or 7% (pol) /16 ϕ bins, generated a*CFF=1, VGG model with 7 free param. errors: typical exp scenario without acceptance in ϕ

Proposed setup in Hall C

 $y P \rightarrow e^+ e^- P'$

Compact Photon Source

- Cu radiator 10%
- e⁻ bended in 2.2 T field, 40cm magnet, dumped in magnet
- 2 mm collimator \rightarrow 0.9 mm spot in target
- W external shielding
- 2.5 $\mu A~e^{-}~beam~\rightarrow$ 1.5 x10^{12} y/s

• ~75% average circular photon polarization rate E_>7.5 GeV

Transversely polarized target JLab/UVA

UVA target, TCS configuration

- Target: ¹⁵NH₃ in ⁴He, 0.6 packing fraction
- DNP 140 GHz RF / 5T magnetic field
- 90° magnet and scattering chamber rotation
- Acceptance: ±17° horizontal, ±(6°-21°) vertical

• Up/down and rotation of target cup to avoid radiation damage, speed adjusted to avoid fatigue on insert

Calorimeters

- 2*2 PbWO calorimeters with 2116 blocks total, active area 0.74 m²
- 22.5 radiation lengths deep
- Vertical aperture $\theta = \pm 1.6^{\circ}$: region affected by high rates from transverse magnetic field
- Resolutions from PrimEx HYCAL tests, at 1 GeV: $\sigma/E \approx 3\%$, $\sigma_x \approx 3mm$, $\Delta m(\pi^\circ) = 2.3$ MeV
- In-situ calibration as SANE Hall C and DVCS Hall A exp., using π° electroproduction

Tracking and recoil proton detector

Proposed:

- Hodoscopes, XY planes 1cm thick scintillator
- 4 segments in front of calorimeters ~1.5m from target, 1 m² active area total
- Cut for high rates: vertical ±1.6°
- PID from dE/dx. 0.3 to 1.3 GeV protons
- tracks bend vertically in magnetic field from target, back-tracking e⁺e⁻ for vertex reconstruction

Solution explored for high rates:

- Smaller or thinner scintillators
- Super BigBite-like large size GEM, 50cm*60cm (same surface)
- → rates up to 1 MHz/cm²
- -> minimal material along track path
- → sub-mm coordinate resolution
- → pointing accuracy < ±50 mrad

dE/dx for protons, π and K vs momentum

Trigger and DAQ

- High rates ≈ 10⁵ Hz
- \rightarrow momentum thresholds : p(e⁻)+p(e⁺) >5 GeV, 2D cuts on E and P
- \rightarrow Triple coincidence and missing mass requirements
- Electronics / DAQ layout:
- \rightarrow flash ADC as used in NPS Hall C experiment
- → concept similar to HPS Hall B and DVCS Hall A experiments as cluster triggering

Trigger threshold cuts:

Data analysis: binning and phase space cuts

Bins: 8 (Q¹², ξ, t), 16 φ bins, 16 $φ_s$ bins, 7.5 <E<11 GeV, 4<Q¹²<9 GeV² (avoid resonances) Trigger thresholds: E(e[±]) > 0.7 GeV, E(e⁺+e⁻) > 5 GeV, p(P) > 0.1 GeV Acceptance cuts: ±1.6° vertical band in calorimeters θ vs φ cut: integrated between BH peaks and/or [40°, 140°] Exclusivity cuts: tagging of e⁺ e⁻ P, Δ M², Δ φ, Δ P

Data analysis: exclusivity cuts and dilution factors

• Re-evaluation of target dilution factor: (¹⁵NH₃, 0.6 packing fraction in ⁴He)

- 27% quoted in proposal: assume proton detection but no exclusivity
- exclusivity cuts exclude inner shell protons more affected by Fermi motion + FSI

 \Rightarrow (1-f) ~ 0.43 of "effective" protons are polarized, P > 0.90±0.05 : (1-f)* P ~ 0.40

• Dilution of unpolarized cross section and beam spin asymmetries:

- counting rates of proposal: only interaction with 3 H from NH_3 , i.e. after subtraction of incoherent scattering off N and He

• Frozen N target in ⁴He: direct measurement of background for dilution factor

 \Rightarrow need 5 days for ~5% uncertainty on BH from N and He

$A_{\mu\nu}$ versus ϕ_s : experimental errors and model dependence

Error bars on first moment fit A*sin(\phi-\phi_s) for 8 \phi_s bins and one (\xi, t, Q'²) bin versus models -t=0.25 GeV²; \xi = 0.18, Q'²=5 GeV², 30°<\theta<150°, 16*16 bins in \phi \& \phi_s.Model: VGG, various parametrizations

• Small asymmetries case of "red" scenario using H+Ĥ in event generator used for the proposal

Main systematics

SOURCE	VALUE	COMMENTS
target polarization	0.05	NMR measurement
target dilution factor	≈ 0.02 SANE result	depend on analysis cuts / possibility of run off frozen N similar target
beam polarization (for A_{oU})	0.02	measured
luminosity (for σ and $\sigma_{_{\rm OU}}$)	-	CPS in development
background subtraction (π^{\pm} , accidental)	-	ongoing measurements other Halls
target resonances	< 0.01	with proton detection
interaction with target material	negligible	with vertex reconstruction, exclusivity
analysis cuts	-	need full simulation

- Target asymmetry measurements dominated by statistics
- Beam spin asymmetry measurements dominated by background suppression
- Cross section measurements dominated by luminosity

 \Rightarrow luminosity request based on statistic uncertainties for target asymmetries

Beam Time Request

Total: 16 calendar days without beam, 35 PAC days commissioning and physics

setup and installation	5 calendar days
signal and electronic checkout	5 calendar days
gain matching of the detector's channels	1 calendar day
commissioning with beam	5 PAC days
physics	30 PAC days
target annealing	1 calendar day
PbWO crystal recovering	1 calendar day
decommissioning	3 calendar days

Beam, 35 PAC days: 2.5 μA e⁻ beam, > 85% longitudinally polarized, E(e) = 11 GeV

SUMMARY

PHYSICS

- CFFs Im(H), Im(E), Im(H), Re(H) thanks to transversely polarized target
- Constraints on GPD universality: timelike process (TCS) versus spacelike (DVCS)
- GPD E and H: constraints on quark angular momentum

SETUP

- Compact Photon Source: high intensity real photons (1.5 x10¹² γ/s)
- 2*2 PWO4 electromagnetic detectors for e⁺e⁻ pair, extension of NPS experiment
- Transversely polarized NH₃ target
- Development: GEM to handle higher rates, for P and e[±] tracking
- Request: 35 PAC days with 11 GeV 2.5 µA polarized e⁻ beam + 16 days for operations

BACKUP

Unpolarized and beam polarized observables off H

 $0.2 < -t < 0.35 \text{ GeV}^2,$ $0.15 < \xi < 0.22$

- Averaging over proton polarization, counts only off H nuclei
- Access Im(H), Re(H)

• Similar FOM than beam asymmetries (sensitive to GPDs through interference)

Beam spin asymmetries and statistical FOM

- Large beam asymmetries, low statistic uncertainties
- access Im(升), sensitive to Im(CFFs)
- Included: statistics from 3 H in NH₃, beam polarization ~.75

• Not included: background contribution, systematics

Experimental context at Jefferson Lab

- Exploratory measurement of cross section at 6 GeV at CLAS (2012)
- Cross section and circularly polarized beam asym at 11 GeV:
- ongoing: CLAS12 E12-12-001, 100 days at 10^{35} cm⁻²s⁻¹ \rightarrow access Im(H) and Re(H)
- future: SoLID E12-12-006A, 50 days at e⁻ flux 10^{37} cm⁻²s⁻¹ \rightarrow Im(H), Re(H), binning in Q'²
- This experiment (Hall C, NPS-like setup)
- 30 days with real photon flux $\approx 10^{35}$ cm⁻²s⁻¹ i.e. 10^{12} y/s
- \rightarrow high luminosity: L(y*p) = 5.85x10⁵ pb⁻¹ off transversely polarized target
- \rightarrow avoid angular and kinematic corrections thanks to real y, ensure exclusivity ($\Delta pT=0$)
- transversely polarized target → access Im(E), Im(H), Im(H), Re(H)

Transverse asymmetry at $\varphi_s = 0^\circ$, $80^\circ < \theta_s < 100^\circ$

Double spin asymmetries: circular photon and transverse proton

- Very sensitive to GPD parametrization and to real part of amplitudes \Rightarrow high impact! - will be measured at the same time, but larger dilution factors and BH doesn't cancel

Circularly polarized beam asymmetries

Wide open magnet for NH3 target

Red is Bz along the beam direction Black is Bz along the axis of a solenoid

B.Wojtsekhowski

Correction solenoids are outside of the aperture They drive the field in opposite direction to the main coils field.

- would benefit for parallel measurements (J/ψ, backward...) and provide higher TCS/BH rates,
- need technical and cost estimate
- may need higher intensity for rates, but would solve part of background problem

Calorimeters: background rates

High background rates in central part from high energetic e⁺e⁻ from y conversion in target

 \rightarrow solution to cut the central part of the calorimeters as above

 \rightarrow suggested: plug in CPS magnetic field to cut low energy tail of bremsstrahlung. Need to be simulated, estimate of background and studied on physics side, may impact observables 24

Data analysis: beam energy and resolutions

y P $\rightarrow e^+e^-P$, exclusivity from balance $e^+e^-vs P \Rightarrow$ "miss" \equiv photon beam = (E_v, 0, 0, E_v)

2000

1500

1000

500

-0.8 -0.6 -0.4 -0.2 0

0.2 0.4

 $0.6 0.8 \Delta Q^2 (GeV^2)$

Resolutions: E_v (gen) – E_{miss} ; t (gen) - t ; ξ (gen) - ξ

• Leptons resolution:

 $\delta E/E = 0.01*(1.15 + 1.17 / \sqrt{E} + 1.8 / E)$

 $\delta x = 2.74 \text{ mm} / \sqrt{E}$ at 1.5 m from vertex

Magnetic field not included

Projection: Target spin asymmetries in φ and φ_s bins Projected uncertainties for bin =(.2<-t<.35; .15<ξ<.22) in 8 φ_s bins and 16 φ bins Fit for display: $A_{u\tau}$ *sin(φ - φ_s) \Rightarrow CFF fit algorithm will combine all φ_s bins of first row, simultenaously with orthogonal bins of second row (same column)

Included: 43% target dilution factor, 90% polarization, and statistic uncertainties.

Impact of dynamic twist corrections on DVCS+TCS fits

- Corrections applied: target mass and restauration of gauge invariance
- Impact on CFFs: ~10% on Re, ~1% on Im, opposite sign in DVCS and TCS
- Impact on DVCS+TCS fits: between "twist 2" and "DVCS" results; 1% (Im) to 10% (Re)
- → below uncertainties on CFFs

Corrections

mass and $\Delta = (p-p')$ in skewness variable:

$$\begin{split} \xi' &= -\frac{\bar{q}^2}{2P \cdot \bar{q}} = \frac{-Q'^2 + \Delta^2/2}{2(s - m^2) + \Delta^2 - Q'^2} \\ \xi &= -\frac{\Delta \cdot \bar{q}}{2P \cdot \bar{q}} = \frac{Q'^2}{2(s - m^2) + \Delta^2 - Q'^2} \end{split}$$

(corrected - asymptotic) asymmetries

Fit results

Dynamic twist corrections for TCS

- leading-twist TCS hadronic part of amplitude with "Ji's" GPDs decomposition $H_{\mu\nu}^{\text{TCS}} = \frac{1}{2} (-g_{\mu\nu})_{\perp} \int_{-1}^{1} dx \left(\frac{1}{x-\xi-i\epsilon} + \frac{1}{x+\xi+i\epsilon} \right)$ $\cdot \left(H(x,\xi,t)\bar{u}(p')\not\!/\!\!/u(p) + E(x,\xi,t)\bar{u}(p')i\sigma^{\alpha\beta}n_{\alpha}\frac{\Delta_{\beta}}{2m}u(p) \right)$ $- \frac{i}{2} (\epsilon_{\nu\mu})_{\perp} \int_{-1}^{1} dx \left(\frac{1}{x-\xi-i\epsilon} - \frac{1}{x+\xi+i\epsilon} \right)$ $\cdot \left(\tilde{H}(x,\xi,t)\bar{u}(p')\not\!/\!\!/\gamma_{5}u(p) + \tilde{E}(x,\xi,t)\bar{u}(p')\gamma_{5}\frac{\Delta\cdot n}{2m}u(p) \right)$ $\Delta = (p'-p)$
- ad-hoc twist 3 corrections for gauge-invariance

$$H^{\mu\nu} = H^{\mu\nu}_{LO} - \frac{P^{\mu}}{2P \cdot \bar{q}} \cdot (\Delta_{\perp})_{\kappa} \cdot H^{\kappa\nu}_{LO} + \frac{P^{\nu}}{2P \cdot \bar{q}} \cdot (\Delta_{\perp})_{\lambda} \cdot H^{\mu\lambda}_{LO} - \frac{P^{\mu}P^{\nu}}{4(P \cdot \bar{q})^2} \cdot (\Delta_{\perp})_{\kappa} \cdot (\Delta_{\perp})_{\lambda} \cdot H^{\kappa\lambda}_{LO}$$

• mass and Δ terms in skewness variables, related to light cone momentum fractions

$$\begin{split} \xi' &= -\frac{\bar{q}^2}{2P \cdot \bar{q}} = \frac{-Q'^2 + \Delta^2/2}{2(s - m^2) + \Delta^2 - Q'^2} \\ \xi &= -\frac{\Delta \cdot \bar{q}}{2P \cdot \bar{q}} = \frac{Q'^2}{2(s - m^2) + \Delta^2 - Q'^2} \end{split}$$

Generalized Parton Distributions in TCS off the nucleon

TCS hadronic tensor and decomposition into GPDs using Ji conventions: $H_{\mu\nu}$

$$= \frac{1}{2} \left(-g_{\mu\nu}\right)_{\perp} \int_{-1}^{1} dx \left(\frac{1}{x-\xi-i\epsilon} + \frac{1}{x+\xi+i\epsilon}\right) \cdot \left(H(x,\xi,t)\bar{u}(p')\not\!\!/ u(p) + E(x,\xi,t)\bar{u}(p')i\sigma^{\alpha\beta}n_{\alpha}\frac{\Delta_{\beta}}{2m_{N}}u(p)\right) \\ - \frac{i}{2} (\epsilon_{\nu\mu})_{\perp} \int_{-1}^{1} dx \left(\frac{1}{x-\xi-i\epsilon} - \frac{1}{x+\xi+i\epsilon}\right) \cdot \left(\tilde{H}(x,\xi,t)\bar{u}(p')\not\!\!/ \gamma_{5}u(p) + \tilde{E}(x,\xi,t)\bar{u}(p')\gamma_{5}\frac{\Delta\cdot n}{2m_{N}}u(p)\right).$$

Access Generalized Parton Distributions (GPDs) through Compton Form Factors (CFFs): (same for DVCS and TCS at asymptotic limit)

$$\begin{aligned} \mathsf{H},\mathsf{E} \Rightarrow & \Re e[\mathcal{F}(\xi,t)] = \mathcal{P} \int_{0}^{1} dx \, [\frac{1}{x-\xi} + \frac{1}{x+\xi}] \cdot [F(x,\xi,t) - F(-x,\xi,t)], \\ \tilde{\mathsf{H}},\tilde{\mathsf{E}} \Rightarrow & \Re e[\tilde{\mathcal{F}}(\xi,t)] = \mathcal{P} \int_{0}^{1} dx \, [\frac{1}{x-\xi} - \frac{1}{x+\xi}] \cdot [\tilde{F}(x,\xi,t) + \tilde{F}(-x,\xi,t)], \\ \mathsf{H},\mathsf{E} \Rightarrow & \Im m[\mathcal{F}(\xi,t)] = \pi [F(\xi,\xi,t) - F(-\xi,\xi,t)], \end{aligned}$$

$$\tilde{\mathsf{H}}, \tilde{\mathsf{E}} \Rightarrow \Im m[\tilde{\mathcal{F}}(\xi, t)] = \pi[\tilde{F}(\xi, \xi, t) + \tilde{F}(-\xi, \xi, t)],$$

 \Rightarrow TCS and DVCS amplitudes are complex conjugate at leading twist and leading order