Timelike Compton Scattering off a transversely polarized proton

1) Motivations
2) Experimental setup
3) Projections
4) Beam time request

Marie Boër, Dustin Keller, Vardan Tadevosyan and the NPS collaboration
JLab PAC 46, July 16, 2018

Timelike and Spacelike Deeply Virtual Compton Scattering

Timelike Compton Scattering (TCS)

$$
\begin{gathered}
y P \rightarrow y^{*}\left(q^{\prime}\right) \mathrm{P}^{\prime} \rightarrow \mathrm{e}^{+} e^{-} \mathrm{P}^{\prime} \\
\mathrm{q}^{2}=0 \text { and } \mathrm{q}^{12}>0
\end{gathered}
$$

Deeply Virtual Compton Scattering (DVCS)

$$
\begin{gathered}
e P \rightarrow y^{*}(q) P^{\prime} \rightarrow e^{\prime} P^{\prime} y \\
q^{2}<0 \text { and } q^{\prime 2}=0
\end{gathered}
$$

Chiral-even GPDs for proton spin 1/2:

Vector: $\mathbf{H}(\mathbf{x}, \xi, \mathrm{t})$
Tensor: E
Axial-vector: H
Pseudo-scalar: Ẽ

TCS and DVCS amplitudes are complex conjugate at leading twist, LO

Some interpretations of GPDs:
\Rightarrow Tomographic views of nucleon with x-dependent impact parameter distributions
\Rightarrow Parton's angular momenta with first moment in x of H and E

Lepton pair photoproduction

$y \mathbf{P} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \mathbf{P}^{\mathbf{\prime}}=$

TCS

5-differential unpolarized cross section: $\xi, Q^{\mathbf{2}}, \mathrm{t}, \varphi, \theta$ 6-differential with transversely polarized proton: φ_{s}

Transversely polarized target spin asymmetries

Sensitive to Im part of amplitudes
\rightarrow BH cancels for single spin asymmetries
\rightarrow reflect interference between TCS and BH
\rightarrow access $\operatorname{Im}(\mathcal{H}), \operatorname{Im}(\mathcal{H}), \operatorname{Im}(\mathcal{E})$

Compton Form Factors from DVCS and TCS

Extracted CFF uncertainties for DVCS, TCS, various sets of observables

Fits of CFFs from DVCS and TCS obs., same ($\xi=.1,-t=.2 \mathrm{GeV}^{2}$), leading twist/order
CFFs = functions of GPDs, $H \rightarrow \operatorname{Im}(\mathcal{H}), \operatorname{Re}(\mathcal{H})$
Pseudo-data: 5\% error (unpol) or 7\% (pol) /16 φ bins, generated a*CFF=1, VGG model with 7 free param. errors: typical exp scenario without acceptance in φ

Proposed setup in Hall C

$$
y \mathbf{P} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \mathbf{P}^{\prime}
$$

Compact Photon Source

- Cu radiator 10\%
- e^{-}bended in 2.2 T field, 40 cm magnet, dumped in magnet
- $2 \mathbf{~ m m}$ collimator $\rightarrow 0.9 \mathrm{~mm}$ spot in target
- W external shielding
- $2.5 \mu \mathrm{~A} \mathrm{e}$ - beam $\rightarrow 1.5 \times 10^{12} \mathrm{y} / \mathrm{s}$
- $\sim 75 \%$ average circular photon polarization rate $E_{v}>7.5 \mathrm{GeV}$

Transversely polarized target JLab/UVA

UVA target, TCS configuration

Calorimeters

- 2*2 PbWO calorimeters with 2116 blocks total, active area $0.74 \mathbf{m}^{2}$
- 22.5 radiation lengths deep
- Vertical aperture $\theta= \pm 1.6^{\circ}$: region affected by high rates from transverse magnetic field
- Resolutions from PrimEx HYCAL tests, at $1 \mathrm{GeV}: \sigma / E \approx 3 \%, \sigma_{\mathrm{x}} \approx 3 \mathrm{~mm}, \Delta \mathrm{~m}\left(\pi^{\circ}\right)=2.3 \mathrm{MeV}$ - In-situ calibration as SANE Hall C and DVCS Hall A exp., using π° electroproduction

Tracking and recoil proton detector

Proposed:

- Hodoscopes, XY planes 1cm thick scintillator
- 4 segments in front of calorimeters $\sim 1.5 \mathrm{~m}$ from target, $1 \mathrm{~m}^{2}$ active area total
- Cut for high rates: vertical $\pm 1.6^{\circ}$
- PID from dE/dx. 0.3 to 1.3 GeV protons
- tracks bend vertically in magnetic field from target, back-tracking e ${ }^{+}$- for vertex reconstruction
$\mathrm{dE} / \mathrm{dx}$ for protons, π and K vs momentum

Solution explored for high rates:

- Smaller or thinner scintillators
- Super BigBite-like large size GEM, $50 \mathrm{~cm} * 60 \mathrm{~cm}$ (same surface)
\rightarrow rates up to $1 \mathrm{MHz} / \mathrm{cm}^{2}$
\rightarrow minimal material along track path
\rightarrow sub-mm coordinate resolution
\rightarrow pointing accuracy < $\pm 50 \mathrm{mrad}$

Trigger and DAQ

- High rates $\approx 10^{5} \mathrm{~Hz}$
\rightarrow momentum thresholds: $\mathrm{p}\left(\mathrm{e}^{-}\right)+\mathrm{p}\left(\mathrm{e}^{+}\right)>5 \mathrm{GeV}, 2 \mathrm{D}$ cuts on E and P
\rightarrow Triple coincidence and missing mass requirements
- Electronics / DAQ layout:
\rightarrow flash ADC as used in NPS Hall C experiment
\rightarrow concept similar to HPS Hall B and DVCS Hall A experiments as cluster triggering

Trigger threshold cuts:

Ecalo+ vs Ecalo- selected

Data analysis: binning and phase space cuts

Bins: 8 ($Q^{\prime 2}, \xi, \mathrm{t}$), 16φ bins, $16 \varphi_{\mathrm{s}}$ bins, $7.5<\mathrm{E}<11 \mathrm{GeV}, 4<\mathrm{Q}^{22}<9 \mathrm{GeV}^{2}$ (avoid resonances)
Trigger thresholds: $\mathrm{E}\left(\mathrm{e}^{ \pm}\right)>0.7 \mathrm{GeV}, \mathrm{E}\left(\mathrm{e}^{+}+\mathrm{e}^{-}\right)>5 \mathrm{GeV}, \mathrm{p}(\mathrm{P})>0.1 \mathrm{GeV}$
Acceptance cuts: $\pm 1.6^{\circ}$ vertical band in calorimeters
θ vs φ cut: integrated between BH peaks and/or [$40^{\circ}, 140^{\circ}$]
Exclusivity cuts: tagging of $\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{P}, \Delta \mathrm{M}^{2}, \Delta \varphi, \Delta \mathrm{P}_{\perp}$

Data analysis: exclusivity cuts and dilution factors

Exclusivity cuts y $\mathbf{P} \rightarrow \mathbf{e}^{+} e^{-} \mathbf{P}$ from balance $\mathbf{e}^{+} e^{-}$vs P. $\quad \mathrm{y}$ untagged: "miss"=beam

- Re-evaluation of target dilution factor: (${ }^{15} \mathrm{NH}_{3}, 0.6$ packing fraction in ${ }^{4} \mathrm{He}$)
- 27\% quoted in proposal: assume proton detection but no exclusivity
- exclusivity cuts exclude inner shell protons more affected by Fermi motion + FSI
$\Rightarrow(1-f) \sim 0.43$ of "effective" protons are polarized, $P>0.90 \pm 0.05$: (1-f)* $P \sim 0.40$
- Dilution of unpolarized cross section and beam spin asymmetries:
- counting rates of proposal: only interaction with 3 H from NH_{3}, i.e. after subtraction of incoherent scattering off N and He
- Frozen N target in ${ }^{4} \mathrm{He}$: direct measurement of background for dilution factor
\Rightarrow need 5 days for $\sim 5 \%$ uncertainty on BH from \mathbf{N} and He

$A_{U T}$ versus φ_{S} : experimental errors and model dependence

Error bars on first moment fit $\mathrm{A}^{*} \sin \left(\varphi-\varphi_{\mathrm{S}}\right)$ for $8 \varphi_{\mathrm{s}}$ bins and one ($\xi, \mathrm{t}, \mathrm{Q}^{\mathbf{2}}$) bin versus models

Main systematics

SOURCE	VALUE	COMMENTS
target polarization	0.05	NMR measurement
target dilution factor	≈ 0.02	depend on analysis cuts / possibility of SANE result run off frozen N similar target
beam polarization (for $A_{\odot u}$)	0.02	measured
luminosity (for σ and $\sigma_{\odot u}$)	-	CPS in development
background subtraction $\left(\pi^{ \pm}\right.$, accidental)	-	ongoing measurements other Halls
target resonances	<0.01	with proton detection
interaction with target material	negligible	with vertex reconstruction, exclusivity
analysis cuts	-	need full simulation

- Target asymmetry measurements dominated by statistics
- Beam spin asymmetry measurements dominated by background suppression
- Cross section measurements dominated by luminosity
\Rightarrow luminosity request based on statistic uncertainties for target asymmetries

Beam Time Request

Total: 16 calendar days without beam, 35 PAC days commissioning and physics

setup and installation	5 calendar days
signal and electronic checkout	5 calendar days
gain matching of the detector's channels	1 calendar day
commissioning with beam	5 PAC days
physics	30 PAC days
target annealing	1 calendar day
PbWO crystal recovering	1 calendar day
decommissioning	3 calendar days

Beam, 35 PAC days:
$2.5 \mu \mathrm{~A}$ e beam,
> 85\% longitudinally polarized,
$\mathrm{E}(\mathrm{e})=11 \mathrm{GeV}$

SUMMARY

PHYSICS

- CFFs $\operatorname{Im}(H), \operatorname{Im}(E), \operatorname{Im}(\mathrm{H}), \operatorname{Re}(\mathrm{H})$ thanks to transversely polarized target
- Constraints on GPD universality: timelike process (TCS) versus spacelike (DVCS)
- GPD E and H: constraints on quark angular momentum

SETUP

- Compact Photon Source: high intensity real photons ($1.5 \times 10^{12} \mathrm{y} / \mathrm{s}$)
- 2*2 PWO4 electromagnetic detectors for $\mathrm{e}^{+} \mathrm{e}^{-}$pair, extension of NPS experiment
- Transversely polarized NH_{3} target
- Development: GEM to handle higher rates, for P and $\mathrm{e}^{ \pm}$tracking
- Request: 35 PAC days with $11 \mathrm{GeV} 2.5 \mu \mathrm{~A}$ polarized e- beam + 16 days for operations

BACKUP

Unpolarized and beam polarized observables off H

Beam spin asymmetries and statistical FOM

- Large beam asymmetries, low statistic uncertainties
- access $\operatorname{Im}(\mathcal{H})$, sensitive to Im (CFFs)
- Included: statistics from 3 H in NH_{3}, beam polarization $\sim .75$
- Not included: background contribution, systematics

Experimental context at Jefferson Lab

- Exploratory measurement of cross section at 6 GeV at CLAS (2012)
- Cross section and circularly polarized beam asym at 11 GeV :
- ongoing: CLAS12 E12-12-001, 100 days at $10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \rightarrow$ access $\operatorname{Im}(\mathrm{H})$ and $\operatorname{Re}(\mathrm{H})$
- future: SoLID E12-12-006A, 50 days at $e^{-f l u x ~} 10^{37} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \rightarrow \mathrm{Im}(\mathrm{H})$, $\operatorname{Re}(\mathrm{H})$, binning in Q^{12}
- This experiment (Hall C, NPS-like setup)
-30 days with real photon flux $\approx 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ i.e. $10^{12} \mathrm{y} / \mathrm{s}$
\rightarrow high luminosity: $\mathrm{L}\left(\mathrm{y}^{*} \mathrm{p}\right)=5.85 \times 10^{5} \mathrm{pb}^{-1}$ off transversely polarized target
\rightarrow avoid angular and kinematic corrections thanks to real γ, ensure exclusivity ($\Delta \mathrm{pT}=0$)
- transversely polarized target \rightarrow access $\operatorname{Im}(E), \operatorname{Im}(H), \operatorname{Im}(H), \operatorname{Re}(H)$

Double spin asymmetries: circular photon and transverse proton

- Very sensitive to GPD parametrization and to real part of amplitudes \Rightarrow high impact!
- will be measured at the same time, but larger dilution factors and BH doesn't cancel

Circularly polarized beam asymmetries

Wide open magnet for NH3 target

- would benefit for parallel measurements (J / Ψ, backward...) and provide higher TCS/BH rates,
- need technical and cost estimate
- may need higher intensity for rates, but would solve part of background problem

Calorimeters: background rates

High background rates in central part from high energetic $\mathrm{e}^{+} e^{-}$from y conversion in target
\rightarrow solution to cut the central part of the calorimeters as above
\rightarrow suggested: plug in CPS magnetic field to cut low energy tail of bremsstrahlung. Need to be simulated, estimate of background and studied on physics side, may impact observables

Data analysis: beam energy and resolutions

y $P \rightarrow \mathbf{e}^{+} e^{-} P$, exclusivity from balance $e^{+} e^{-}$vs $P \Rightarrow$ "miss" \equiv photon beam $=\left(E_{\gamma}, 0,0, E_{\gamma}\right)$
Resolutions: E_{y} (gen) $-\mathrm{E}_{\text {miss }} ; \mathrm{t}(\mathrm{gen})-\mathrm{t} ; \boldsymbol{\xi}(\mathrm{gen})-\boldsymbol{\xi}$

$\delta E / E$ beam $<2 \%, \delta \xi$ and $\delta t «(\xi, t)$ bin size

- Proton resolution:
$\delta p / p=0.10$
$\delta x=2 \mathrm{~cm} / \sqrt{ } 12$ at 1.5 m from vertex
- Leptons resolution:
$\delta E / E=0.01 *(1.15+1.17 / \sqrt{ } E+1.8 / E)$ $\delta x=2.74 \mathrm{~mm} / \sqrt{ } \mathrm{E}$ at 1.5 m from vertex
- Magnetic field not included

Projection: Target spin asymmetries in φ and φ_{s} bins

Projected uncertainties for bin =(.2<-t<.35; .15<そ<.22) in $8 \varphi_{s}$ bins and 16φ bins Fit for display: $A_{U T}{ }^{*} \sin \left(\varphi-\varphi_{S}\right) \Rightarrow$ CFF fit algorithm will combine all φ_{S} bins of first row, simultenaously with orthogonal bins of second row (same column)

$7 \pi / 8<\varphi_{S}<\pi$

Included: 43\% target dilution factor, 90\% polarization, and statistic uncertainties.

Beam spin

 asymmetries vs kinematics-t $<0.2 \mathrm{GeV}^{2}$

$$
0.2<-t
$$

$$
<0.35 \mathrm{GeV}^{2}
$$

$0.35<-t$ $<0.7 \mathrm{GeV}^{2}$

+ BH+TCS circularly polarized beam spin asymmetry
(with stat. uncertainties)
~75\% kinematic dependent dilution factor is included
$0.22<\xi<0.3$

Beam spin asymmetries statistic FOM
-t $<0.2 \mathrm{GeV}^{2}$
$0.2<-t$
$<0.35 \mathrm{GeV}^{2}$
$0.35<-t$ $<0.7 \mathrm{GeV}^{2}$

$0.15<\xi<0.22$

$0.1<\xi<0.15$

Figure of merit:
FOM $=N^{\star}\left(A_{\odot u}\right)^{2}$
Beam spin asymmetries
~75\% kinematic dependent dilution factor is included
$0.22<\xi<0.3$

Impact of dynamic twist corrections on DVCS+TCS fits

- Corrections applied: target mass and restauration of gauge invariance
- Impact on CFFs: $\mathbf{\sim 1 0 \%}$ on Re, $\sim 1 \%$ on Im, opposite sign in DVCS and TCS
- Impact on DVCS+TCS fits: between "twist 2" and "DVCS" results; 1\% (Im) to 10\% (Re)
\rightarrow below uncertainties on CFFs

Corrections

mass and $\Delta=\left(p-p^{\prime}\right)$ in skewness variable:

$$
\begin{aligned}
\xi^{\prime} & =-\frac{\bar{q}^{2}}{2 P \cdot \bar{q}}=\frac{-Q^{\prime 2}+\Delta^{2} / 2}{2\left(s-m^{2}\right)+\Delta^{2}-Q^{\prime 2}} \\
\xi & =-\frac{\Delta \cdot \bar{q}}{2 P \cdot \bar{q}}=\frac{Q^{\prime 2}}{2\left(s-m^{2}\right)+\Delta^{2}-Q^{\prime 2}}
\end{aligned}
$$

(corrected - asymptotic) asymmetries

Fit results

Dynamic twist corrections for TCS

- leading-twist TCS hadronic part of amplitude with "Ji's" GPDs decomposition

$$
\begin{aligned}
& H_{\mu \nu}^{\mathrm{TCS}}= \\
& \frac{1}{2}\left(-g_{\mu \nu}\right)_{\perp} \int_{-1}^{1} \mathrm{~d} x\left(\frac{1}{x-\xi-i \epsilon}+\frac{1}{x+\xi+i \epsilon}\right) \\
& \cdot\left(H(x, \xi, t) \bar{u}\left(p^{\prime}\right) \not h u(p)+E(x, \xi, t) \bar{u}\left(p^{\prime}\right) i \sigma^{\alpha \beta} n_{\alpha} \frac{\Delta_{\beta}}{2 m} u(p)\right) \\
& -\frac{i}{2}\left(\epsilon_{\nu \mu}\right)_{\perp} \int_{-1}^{1} \mathrm{~d} x\left(\frac{1}{x-\xi-i \epsilon}-\frac{1}{x+\xi+i \epsilon}\right) \\
& \cdot\left(\tilde{H}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \not \hbar \gamma_{5} u(p)+\tilde{E}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \gamma_{5} \frac{\Delta \cdot n}{2 m} u(p)\right) \\
& \Delta=\left(p^{\prime}-p\right)
\end{aligned}
$$

- ad-hoc twist 3 corrections for gauge-invariance

$$
\begin{aligned}
H^{\mu \nu}= & H_{L O}^{\mu \nu}-\frac{P^{\mu}}{2 P \cdot \bar{q}} \cdot\left(\Delta_{\perp}\right)_{\kappa} \cdot H_{L O}^{\kappa \nu} \\
& +\frac{P^{\nu}}{2 P \cdot \bar{q}} \cdot\left(\Delta_{\perp}\right)_{\lambda} \cdot H_{L O}^{\mu \lambda} \\
& -\frac{P^{\mu} P^{\nu}}{4(P \cdot \bar{q})^{2}} \cdot\left(\Delta_{\perp}\right)_{\kappa} \cdot\left(\Delta_{\perp}\right)_{\lambda} \cdot H_{L O}^{\kappa \lambda}
\end{aligned}
$$

- mass and Δ terms in skewness variables, related to light cone momentum fractions

$$
\begin{aligned}
\xi^{\prime} & =-\frac{\bar{q}^{2}}{2 P \cdot \bar{q}}=\frac{-Q^{2}+\Delta^{2} / 2}{2\left(s-m^{2}\right)+\Delta^{2}-Q^{\prime 2}} \\
\xi & =-\frac{\Delta \cdot \bar{q}}{2 P \cdot \bar{q}}=\frac{Q^{\prime 2}}{2\left(s-m^{2}\right)+\Delta^{2}-Q^{\prime 2}}
\end{aligned}
$$

$\mathrm{R}=$ corrected / asymptotic unpolarized cross sections, vs t (left) and vs Q'2 (right)

Generalized Parton Distributions in TCS off the nucleon

TCS hadronic tensor and decomposition into GPDs using Ji conventions:
$H_{\mu \nu}$
$=\frac{1}{2}\left(-g_{\mu \nu}\right)_{\perp} \int_{-1}^{1} d x\left(\frac{1}{x-\xi-i \epsilon}+\frac{1}{x+\xi+i \epsilon}\right) \cdot\left(H(x, \xi, t) \bar{u}\left(p^{\prime}\right) \not x u(p)+E(x, \xi, t) \bar{u}\left(p^{\prime}\right) i \sigma^{\alpha \beta} n_{\alpha} \frac{\Delta_{\beta}}{2 m_{N}} u(p)\right)$
$-\frac{i}{2}\left(\epsilon_{\nu \mu}\right)_{\perp} \int_{1}^{1} d x\left(\frac{1}{x-\xi-i \epsilon}-\frac{1}{x+\xi+i \epsilon}\right) \cdot\left(\tilde{H}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \not h \gamma_{5} u(p)+\tilde{E}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \gamma_{5} \frac{\Delta \cdot n}{2 m_{N}} u(p)\right)$.
Access Generalized Parton Distributions (GPDs) through Compton Form Factors (CFFs): (same for DVCS and TCS at asymptotic limit)
$\mathrm{H}, \mathrm{E} \Rightarrow \quad \Re e[\mathcal{F}(\xi, t)]=\mathcal{P} \int_{0}^{1} d x\left[\frac{1}{x-\xi}+\frac{1}{x+\xi}\right] .[F(x, \xi, t)-F(-x, \xi, t)]$,
$\tilde{\mathrm{H}}, \tilde{\mathrm{E}} \Rightarrow \quad \Re e[\tilde{\mathcal{F}}(\xi, t)]=\mathcal{P} \int_{0}^{1} d x\left[\frac{1}{x-\xi}-\frac{1}{x+\xi}\right] \cdot[\tilde{F}(x, \xi, t)+\tilde{F}(-x, \xi, t)]$,
$\mathrm{H}, \mathrm{E} \Rightarrow \quad \Im m[\mathcal{F}(\xi, t)]=\pi[F(\xi, \xi, t)-F(-\xi, \xi, t)]$,
$\tilde{\mathrm{H}}, \tilde{\mathrm{E}} \Rightarrow \quad \Im m[\tilde{\mathcal{F}}(\xi, t)]=\pi[\tilde{F}(\xi, \xi, t)+\tilde{F}(-\xi, \xi, t)]$,
\Rightarrow TCS and DVCS amplitudes are complex conjugate at leading twist and leading order

