CLAS12 Run Group B *Electroproduction on deuterium with CLAS12*

- Physics goals
- Presentation of the RG-B experiments
 - Experimental setup
 - Running conditions
 - Run plan and task sharing

Silvia Niccolai, IPN Orsay, on behalf of RG-B

CLAS Collaboration meeting, JLab, 7/13/2018

CLAS12 Run-Group B

- Common features to all experiments of RG-B:
 - ✓ Liquid deuterium target
 - ✓ Beam energy: 11 GeV
 - \checkmark Luminosity = 10^{35} cm²/s
- Approved PAC days: **90**
- 4 PAC-approved experiments, 1 High-Impact experiment, 3 Run-Group experiments
- First experiment approved in 2007, last one in 2018

E12-07-104	Neutron magnetic form factor	G. Gilfoyle	A-	30
E12-09-007(a)	Study of parton distributions in K SIDIS	K. Hafidi→W. Armstrong	A-	56
E12-09-008	Boer-Mulders asymmetry in K SIDIS	M. Contalbrigo	A-	56
E12-11-003	Deeply virtual Compton scattering on the neutron	S. Niccolai	A (HI)	90
E12-09-008b	Collinear nucleon structure at twist-3 in dihadron SI	DIS S. Pisano→M. Mirazita		
E12-11-003a	In medium structure functions, SRC, and the EMC e	ffect O. Hen		
E12-11-003b	Study of J/ψ photoproduction off the deuteron	Y. Ilieva		

Schedule: first half of RG B running in January 30th - March 10th 2018, second half in October 1st – November 24th

E12-11-003: DVCS on the neutron

A combined analysis of DVCS observables for proton and neutron targets is necessary for flavor separation of GPDs

$$(H,E)_{u}(\xi,\xi,t) = \frac{9}{15} \Big[4 \big(H,E \big)_{p}(\xi,\xi,t) - \big(H,E \big)_{n}(\xi,\xi,t) \Big]$$
$$(H,E)_{d}(\xi,\xi,t) = \frac{9}{15} \Big[4 \big(H,E \big)_{n}(\xi,\xi,t) - \big(H,E \big)_{p}(\xi,\xi,t) \Big]$$

The beam-spin asymmetry of nDVCS is the observable the most sensitive to the least constrained GPD, $E(\rightarrow J_a)$

The BSA for nDVCS:

• is complementary to the TSA for pDVCS on transverse target, aiming at E

• depends strongly on the kinematics \rightarrow wide coverage needed

E12-11-003: DVCS on the neutron

 $ed \rightarrow e(p)n\gamma$ Fully exclusive final state: CLAS12+FT+CND

Spokespersons: A. El Alaoui, V. Kubarovsky, S. Niccolai, S. Pisano, D. Sokhan

XB

E12-07-104: Measurement of the neutron magnetic form factor at high Q² using the ratio method on deuterium

Spokespersons: W. Brooks, G. Gilfoyle, K. Hafidi

- Elastic electromagnetic form factors (EEFFs) are fundamental observables that describe the distribution of charge and magnetization
- JLab program has **seven approved experiments** to measure **all four EEFFs**
- Early test of lattice QCD, because the isovector form factor is less computationally intensive –

- All four EEFFs are needed to do flavor decomposition which shows surprising differences between u and d quarks
- The form factors are the **first moments of the GPDs** and provide a important constraint on their value

E12-07-104: Measurement of the neutron magnetic form factor at high Q² using the ratio method on deuterium

Spokespersons: W. Brooks, G. Gilfoyle, K. Hafidi

- Both particles of the two quasi-elastic final states will be detected in CLAS12
- Neutrons will be detected in the FEC, PCAL and FTOF
- A dual target (H/D) was approved by the PAC to monitor neutron efficiency and minimize systematics
- Full torus field, inbending
- Approved for 30 days of running

E12-09-008: Boers-Mulders asymmetry in K SIDIS

Spokespersons: H. Avakian, M. Contalbrigo, K. Joo, Z. Meziani

Goal: measurement of **spin azimuthal asymmetries** in **K-SIDIS** \rightarrow transverse momentum dependence of **valence quark transverse spin distributions** \rightarrow **spin-orbit correlations**

E12-09-008: Boers-Mulders asymmetry in K SIDIS

Spokespersons: H. Avakian, M. Contalbrigo, K. Joo, Z. Meziani

Projections for CLAS12 experiment: error bars and kinematic coverage

- **RICH** is required for kaon ID
- 56 approved days, 50% (27 days) outbending
- Dual target (H/D), opposite field polarity for systematic checks

E12-09-007a: Study of partonic distributions in SIDIS K production

Spokespersons: H. Avakian, F. Benmoktar, A. El Alaoui, <u>K. Hafidi</u>, M. Mirazita Contact person: W. Armstrong

Goal: measure **multiplicities** for various hadrons $(\pi^+, \pi^-, \pi^0, K^+, K^-, K_s^0)$ on deuterium, for 0.05< *x* <0.7

- \rightarrow Measure **fragmentation functions** and their Q² dependence
- → Extract strange quark parton distribution functions
- Part of an extensive program on unpolarized and polarized **proton and deuterium** targets (**RG-A**, **RG-B**, and **RG-C**)

HERMES: 0.2 < z < 0.8 & integrated over Q^2

 $\begin{array}{l} CLAS12: \ 1.3 < Q^2 < 1.6 \ GeV^2 \ \& \ 0.5 < z < 0.6 \\ 4.0 < Q^2 < 5.0 \ GeV^2 \ \& \ 0.5 < z < 0.6 \end{array}$

E12-09-007a: Study of partonic distributions in SIDIS K production

Spokespersons: H. Avakian, F. Benmoktar, A. El Alaoui, <u>K. Hafidi</u>, M. Mirazita Contact person: W. Armstrong

- 56 PAC days (including 2 days of diagnostics)
- Dual (H/D) target
- **RICH** necessary for kaon ID
- 50 % of beam time with reverse magnetic field (27 days)

E12-09-008b: Higher-twist collinear structure of the nucleon through di-hadron SIDIS on unpolarized hydrogen and deuterium

Measuring on both proton and deuteron will allow flavor decomposition

E12-09-008b: Higher-twist collinear structure of the nucleon through di-hadron SIDIS on unpolarized hydrogen and deuterium

E12-11-003a: In medium proton structure functions, SRC and the EMC effect measured with CLAS12 and the Back Angle Neutron Detector

Spokespeople: O. Hen, L. Weinstein, H. Hakobyan and E. Piasetzky

Is the nucleon modification of the EMC-Effect due to Mean-Field nucleons or correlated pairs?

Measure the bound proton structure function as a function of neutron momentum or virtuality in deuterium SRC hypothesis predicts modification increasing with virtuality

A way to select DIS on high-momentum nucleons is needed

E12-11-003a: In medium proton structure functions, SRC and the EMC effect measured with CLAS12 and the Back Angle Neutron Detector

Spokespeople: O. Hen, L. Weinstein, H. Hakobyan and E. Piasetzky

Study of J/ψ photoproduction off deuteron

Spokespeople: M.D. Baker, A. Freese, L. Guo, Ch. Hyde, <u>Y. Ilieva</u>, B. McKinnon, P. Nadel-Turonski, M. Sargsian, V. Kubarovsky, S. Stepanyan, N. Zachariou, Zh.W. Zhao

Why J/ψ ?

- Small transverse size: $r_{\perp} \sim 1/m_c = 0.13$ fm
- Large t at threshold, $|t_{min}|=1.7 (GeV/c)^2$
- $b \sim 1/|t|^{1/2} = 0.2 \text{ fm}$
- The \overline{CC} couples to gluon field in the target. Process dominated by **multi-gluon exchange**.
- Probes the **short-range structure** of the target.

Objectives

To determine the cross section of:

- Quasi-free photoproduction off **neutron**: $\gamma(n) \rightarrow J/\psi n$
 - Search for isospin partners of LHCb

pentaquarks

- Test bound-nucleon gluonic form factors
- Final-State Interactions (J/ ψ N rescattering)
 - Estimate $\sigma_{J/\psi N}$
- Coherent photoproduction: $\gamma d \rightarrow J/\psi d$
 - Study gluonic form-factor of deuteron

Study of J/ψ photoproduction off deuteron

Experimental Configuration

- Unpolarized LD2 target and 11-GeV electron beam, L=10³⁵ s⁻¹cm⁻².
- Standard CLAS electron trigger and a Muon trigger (established during RGA).
- Charged-hadron detection in the Forward and Central Detectors.
- Neutron detection in the Forward Detector (will look for CND capabilities as well).
- Full torus field, electrons in-bending.

Expected yields

- Quasi-free production off neutron: ~30 J/ ψ per day (including both, e⁺e⁻ and $\mu^+\mu^-$ decays).
- Incoherent production: < 3 J/ ψ per day (including both, e⁺e⁻ and $\mu^+\mu^-$ decays).
- Coherent production: ~ $0.3 1 \text{ J/\psi}$ per day (including both, e⁺e⁻ and $\mu^+\mu^-$ decays).

Run group B: experimental setup

BAND: Scintillator Assembly

Goal: install an almost-complete detector this summer for testing and commissioning with beam during Run Group A

Glued bars, before and after light-tight wrapping.

116 7.2x7.2 cm² scintillators 24 2x7.2 cm² veto scintillators Lead shielding Laser calibration system

BAND status

Frame:

- ✓ Design complete (UTFSM)
- ✓ Under construction (MIT), expected 7/27
- Scintillators:
 - Light guides done (FSU)
 vote light guides expected 7/
 - \checkmark veto light guides expected 7/16
 - ✓ All bars and PMTs tested (ODU/MIT/JLab)
 - Assembly underway (ODU/MIT/JLab), exp. 7/20
- Laser and distribution box on hand (MIT)
 - \checkmark Optical fiber delivery delayed
- Inner magnetic shields (MIT) expected 7/27
 - ✓ Remainder expected by 10/1
- Most electronics and cables on hand, some ordered
 - ✓ Will read out ~50% of detector during RGA

Installation in CLAS12 starting about 7/30

All RG experiments agreed on the same set of running conditions (ERR, February 2018)

- Common goal: maximize statistics on deuterium
 - Single cell target: liquid deuterium preferred over dual target
- **RG-A data** will be used to **subtract proton contribution and/or evaluate neutron efficiencies**:
 - Same target cell as RG-A (5 cm long, single cell)

Time it takes to change target material: one shift at most (Bob Miller)

RG-B will have **periodic hydrogen-target runs** (~8%) to monitor neutron-detection efficiency → ~60% of the hydrogen running than what would be obtained with the dual target for 30 days NDE will also be monitored from kinematically complete reactions on deuterium

Example of NDE extracted from deuterium data:

- Work by S. A. Pereira on CLAS-g10 data set
- Chosen reaction $\gamma d \rightarrow pn \pi^+ \pi^-$
- Exclusivity cuts to select the final state precisely
- Efficiency obtained comparing detected and expected neutrons

Possible channels to measure NDE in RG-B:

• ed \rightarrow e'pn $\pi^+\pi^-$

All RG experiments agreed on the same set of running conditions (ERR, February 2018)

- Common goal: maximize statistics on deuterium
 - Single cell target: liquid deuterium preferred over dual target
- RG-A data will be used to subtract proton contribution and/or evaluate neutron efficiencies:
 - Same target cell as RG-A (5 cm long, single cell)
- Magnetic field settings: same as RG-A, for consistency
 - ➢ 75% full torus field inbending, 25% full torus field outbending − solenoid full field

For 90 days of running: 67 days inbending, 23 days outbending

- SIDIS proposals originally asked for 27 days outbending \rightarrow **OK**
- GMn proposal asked for 30 days inbending \rightarrow **OK**
- nDVCS originally asked for 90 days inbending \rightarrow **OK**

Full simulations+reconstruction for nDVCS

Small difference on resolutions

All RG experiments agreed on the same set of running conditions (ERR, February 2018)

- Common goal: maximize statistics on deuterium
 - Single cell target: liquid deuterium preferred over dual target
- **RG-A data** will be used to **subtract proton contribution and/or evaluate neutron efficiencies**:
 - Same target cell as RG-A (5 cm long, single cell)
- Magnetic field settings: same as RG-A, for consistency
 - > 75% full torus field inbending, 25% full torus field outbending solenoid full field

For 90 days of running: 67 days inbending, 23 days outbending

- ✓ SIDIS proposals originally asked for 27 days outbending \rightarrow **OK**
- ✓ GMn proposal asked for 30 days inbending \rightarrow **OK**
- ✓ nDVCS originally asked for 90 days inbending \rightarrow **OK**
- ✓ SRC/EMC experiment asked for 90 days inbending \rightarrow **OK**

All RG experiments agreed on the same set of running conditions (ERR, February 2018)

- Common goal: maximize statistics on deuterium
 - Single cell target: liquid deuterium preferred over dual target
- **RG-A data** will be used to **subtract proton contribution and/or evaluate neutron efficiencies**:
 - Same target cell as RG-A (5 cm long, single cell)
- Magnetic field settings: same as RG-A, for consistency
 - > 75% full torus field inbending, 25% full torus field outbending solenoid full field

For 90 days of running: 67 days inbending, 23 days outbending

- ✓ SIDIS proposals originally asked for 27 days outbending \rightarrow **OK**
- ✓ GMn proposal asked for 30 days inbending \rightarrow **OK**
- ✓ nDVCS originally asked for 90 days inbending \rightarrow **OK**
- ✓ SRC/EMC experiment asked for 90 days inbending \rightarrow **OK**
 - Ancillary runs: 8% of liquid hydrogen target runs, plus empty target and Moeller runs
 - Luminosity: **10**³⁵ **cm**²/s
 - Beam current ~ 62 nA
 - Beam energy = 11 GeV

RSAD, COO, ESAD, and Operation Manuals are done RG-B Web page and wiki page have been created

Run group B: draft of trigger configuration

Same as RG-A, without the FT trigger

• Inclusive electron scattering trigger

Scattered electron detected in the **Forward Detectors**: High Threshold Cherenkov Counter (HTCC), Drift Chambers (DC), Preshower Calorimeter (PCAL) and Electromagnetic Calorimeter (EC). **Rates for RG-A at ~50 nA: 5.2 kHz for inbending torus, 9.4 kHz for outbending**

• "Muon" trigger

Select events with two muons detected in the Forward Detectors only. This trigger does not require to detect the scattered electron at all.

Rates for RG-A at ~50 nA: 2.8 kHz for inbending torus, 2.1 kHz for outbending

• Technical triggers (prescaled)

- Electron trigger without DC segments
- PCALxECAL trigger with low threshold
- Forward tagger trigger with low threshold
- Random triggers (generator + Faraday cap)

Responsibilities and manpower

Run coordinators for RG-B: S. Niccolai, J. Gilfoyle, M. Contalbrigo, M. Mirazita, O. Hen, W. Armstrong, D. Sokhan, V. Kubarovsky (~1.5 weeks each, for the first 3-months run)

Calibrations: task sharing

- HTCC, LTCC: JLab
- DC: ANL/JLab
- FTOF: Richmond/ANL
- CTOF: Orsay
- RICH: Frascati/Ferrara
- FT: Orsay/Glasgow
- CND: Orsay
- ECAL, PCAL: Richmond
- CVT: JLab/Saclay
- BAND: MIT/ODU

 Calibration procedures are being finalized and tested during RG-A
 Data reconstruction (COATJAVA) is already in use for RG-A

Readyness for physics results: the example of nDVCS

Event generator: pDVCS/nDVCS on deuterium

- \rightarrow GEMC 2a.4.2, RG-A gcard + deuterium target
- \rightarrow COATJAVA 5b.5.0
- \rightarrow ROOT-based data analysis (code on github)
- \rightarrow PID from EB
- Electrons detected in **FD**
- Photons detected in **EC** and **FT**
- Neutrons detected in **CND** only (so far)

DVCS: kinematic variables and exclusivity cuts

Summary

- RG-B has 7 experiments, sharing the common goal to advance in the multi-dimensional imagining of the nucleon, disentangling the quark flavor dependence
- Strictly linked to RG-A → same running conditions (beam energy, target cell, magnetic fields)
- Detector configuration: same as RG-A (+LD2) + BAND (installation in July)
- Task sharing for data taking, calibrations, and reconstruction is established
- The experiment groups have manpower to accomplish these tasks and their own analyses
- The tools for the data analysis are available and are being tuned on simulation and RG-A data
- \rightarrow Looking forward to take data in 2019!

Back-up slides

Di-hadron: Kinematic distributions

P vs θ for electrons

P vs θ for π

