

Isospin Dependence of the EMC Effect and Short-Range Correlations

Barak Schmookler

MIT

Deep Inelastic Scattering and the EMC Effect

Deep Inelastic Scattering and the EMC Effect

Deep Inelastic Scattering and the EMC Effect

5

J. Seely et al., Phys. Rev. Lett. 103, 202301 (2009).

Study (e,e') Data using CLAS6 Detector

Nucleon pairs that are close together in the nucleus

<u>Momentum space</u>: high relative and low c.m. momentum, compared to the Fermi momentum (k_F)

Nucleon pairs that are close together in the nucleus

<u>Momentum space</u>: high relative and low c.m. momentum, compared to the Fermi momentum (k_F)

Scaling: High-momentum component of nuclear wave functions are deuteron-like.

a₂: Probability of finding a high momentum nucleon in nucleus A relative to deuterium

Weiss, Cruz-Torres, Barnea, Piasetzky and Hen, Phys. Lett. B 780, 211 (2018)

Inclusive quasi-elastic scattering \rightarrow minimum nucleon momentum depends on Q² and x_B

We access high-momentum part of the nuclear wave function at large Q^2 and $x_{_{\rm B}}$

Our New SRC a₂ Measurements

28

Our New SRC a₂ Measurements

Our New SRC a₂ Measurements

30

Our New SRC a₂ Measurements

Back to the EMC Effect

- Two leading approaches for describing the EMC effect:
 - 1)All nucleons are slightly modified when bound in nuclei
 - 2)Nucleons are unmodified most of the time, but are modified significantly when they fluctuate into SRC pairs

Observed EMC-SRC Correlation

L. Weinstein et. al., Phys. Rev. Lett. 106, 052301 (2011)
O. Hen et al. Phys. Rev. C 85 047301 (2012).
O. Hen et al., Rev. Mod. Phys. 89, 045002 (2017)

Observed EMC-SRC Correlation

L. Weinstein et. al., Phys. Rev. Lett. 106, 052301 (2011)
O. Hen et al. Phys. Rev. C 85 047301 (2012).
O. Hen et al., Rev. Mod. Phys. 89, 045002 (2017)

Use the Isospin Dependence of SRC Pairs

M. Duer et al. (CLAS Collaboration), Nature, In-Print (2018)

Use the Isospin Dependence of SRC Pairs

M. Duer et al. (CLAS Collaboration), Nature, In-Print (2018)

 $\Delta F_2^N = F_2^{N*} - F_2^N$

$$F_2^d = F_2^p + F_2^n + n_d^{SRC} \left(\Delta F_2^p + \Delta F_2^n \right)$$

Can Solve for F_2^n

 $\Delta F_2^N = F_2^{N*} - F_2^N$

$$F_2^d = F_2^p + F_2^n + n_d^{SRC} \left(\Delta F_2^p + \Delta F_2^n \right)$$
$$a_2 \equiv \frac{2}{A} n_A^{SRC} / n_d^{SRC}$$

$$n_d^{SRC} \frac{\Delta F_2^p + \Delta F_2^n}{F_2^d} = \frac{\frac{F_2^A}{F_2^d} - (Z - N)\frac{F_2^p}{F_2^d} - N}{\frac{A}{2}a_2 - N}$$

Universal???

Nucleus-Dependent

Everything is Known

Universal!!!

Interlude: Free Neutron Extraction

Focus on Neutron-Rich Nuclei

M. Duer et al. (CLAS Collaboration), Nature, In-Print (2018)

Focus on Neutron-Rich Nuclei

M. Duer et al. (CLAS Collaboration), Nature, In-Print (2018)

Focus on Neutron-Rich Nuclei

M. Duer et al. (CLAS Collaboration), Nature, In-Print (2018)

Form New Per-Neutron (Proton) Quantities

Per-Neutron Quantities: $\frac{\sigma_A/N}{\sigma_D/1}$

Per-Proton Quantities: $\frac{\sigma_A/Z}{\sigma_D/1}$

Form New Per-Neutron (Proton) Quantities

Per-Neutron Quantities:

$$\frac{\sigma_A/N}{\sigma_D/1}$$

$$dR_{EMC}^n/dx = \left(\frac{A}{2 \cdot N}\right) \times dR_{EMC}/dx$$

$$a_2^n = \left(\frac{A}{2 \cdot N}\right) \times a_2$$

Per-Proton Quantities:

$$\frac{\sigma_A/Z}{\sigma_D/1}$$

$$dR_{EMC}^p/dx = \left(\frac{A}{2\cdot Z}\right) \times dR_{EMC}/dx \qquad a_2^p = \left(\frac{A}{2\cdot Z}\right) \times a_2$$

Per-Neutron (Proton) Ratios: What Does Our Model Predict?

$$\frac{F_2^A/N}{F_2^d/1} = \left(a_2^n - 1\right) \cdot \left[n_{SRC}^d \frac{\Delta F_2^p + \Delta F_2^n}{F_2^d}\right] + \left(\frac{Z}{N} - 1\right) \frac{F_2^p}{F_2^d} + 1$$

$$a_2^n = \frac{n_{SRC}^A/N}{n_{SRC}^d/1}$$

Per-Neutron (Proton) Ratios: What Does Our Model Predict?

New EMC-SRC Correlation

New EMC-SRC Correlation

Thank You !!!

Additional Slides

Uncertainties on DIS Cross-Section Ratios

Source	Point-to-point (%)	Normalization (%)
Time-Dependent Instabilities		1.0
Target Thickness and Cuts		1.42 - 1.58
Acceptance Corrections	0.6(2,5)	
Radiative Corrections		0.5
Coulomb Corrections		0.1
Bin-Centering Corrections	0.5	
Total	0.78	1.81 - 1.94

Uncertainties on QE Cross-Section Ratios

Source	Point-to-point (%)	Normalization $(\%)$
Time-Dependent Instabilities		1.0
Target Thickness and Cuts		1.42 - 1.58
Acceptance Corrections	1.2 (2.5, 10)	
Radiative Corrections		0.5
Coulomb Corrections		0.2 - 1.0
Bin-Centering Corrections	0.5	
Kinematical Corrections	0.3	
Total	1.33	1.82 - 2.18

EMC Slopes are Stable to Kinematic Cut

Effect of our Isoscalar Corrections

EMC-SRC Correlations with Isoscalar Corrections

