

I D E A FUSION

Validation of neutrino energy estimation using electron scattering data

Student Mariana Khachatryan Supervisor Lawrence Weinstein

Outline

- The importance of energy reconstruction in neutrino oscillation experiments
- □ What can we learn from e- scattering studies?
- Testing neutrino beam energy reconstruction methods with electron scattering JLab CLAS data

(Long Baseline) Oscillation Challenge

What can we learn from e- scattering studies?

 Similar e⁻ and neutrino interactions with nuclei (FSI, when knock-out nucleon rescatters of other nucleons before coming out of nuclei , Resonance production, Multinucleon effects, etc.)

- e- beam energy is known —>can test energy reconstruction in selective kinematics
- compare to GENIE neutrino event generator results running in e- scattering mode

 e^{-} , v (NC, CC) – nucleus inclusive scattering cross sections

$$\begin{pmatrix} \frac{d^2\sigma}{d\varepsilon'd\Omega} \end{pmatrix}_{e^-} = \begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_M \begin{bmatrix} v_L R_L + v_T R_T \end{bmatrix} \qquad \begin{pmatrix} \frac{d^2\sigma}{d\varepsilon'd\Omega} \end{pmatrix}_{v/\overline{v}} = \frac{G^2}{2\pi^2} k' \varepsilon' F(Z,k') \cos^2 \frac{\theta}{2} \begin{bmatrix} v_L R_L + v_T R_T + v_{zz} R_{zz} - v_{0z} R_{0z} \mp v_{xy} R_{xy} \end{bmatrix}$$

$$F(Z,k') - \text{Fermi function} \qquad \text{v-known factors}$$

$$G - G_F \cos \theta_C(CC), G_F(NC) \qquad \text{R-nuclear response}$$

$$k^{\mu} = (\varepsilon, \vec{k}), k^{\mu'} = (\varepsilon', \vec{k}') - \text{ initial and final lepton four momenta}$$

v - N and $e^- - N$ Quasi-Elastic (QE) scattering

Testing energy reconstruction methods in neutrnio experiments with e- scattering data

- $$\begin{split} \mathbf{E}_{\nu} & \text{Reconstruction from lepton kinematics} \\ & [(e,e') \text{ or } (\mathcal{V},l)] \text{ (assumes QE)} \\ & E_{\text{QE}} = \frac{2M\varepsilon + 2ME_1 m_l^2}{2(M E_1 + |k_1| \cos \theta)} \end{split}$$
 - $\varepsilon \approx 20$ MeV single nucleon separation energy
 - M-nucleon mass
 - m_1 outgoing lepton mass
 - k_1 lepton three momentum
 - θ lepton scattering angle

 E_{v} Reconstruction from 'full' final state [(e,e'pX) or (v,lX)]

$$E_{\text{Cal}} = E_e' + \sum T_p + E_{\text{Binding}} + \sum E_{\pi}$$

 E_{Binding} – Binding energy

- T_p kinetic energy of knock out proton
- $E_{e}^{'}$ energy of scattered electron
- E_{π} energy of produced meson

Look at A(e,e') and A(e,e'p) no pion spectra (Standard QE selection) to test E reconstruction techniques.

Scale the e⁻ scattering data with $1/\sigma_{Mott}$ to have 'neutrino like' data!

E2a experiment

³He , ⁴He, ¹²C, ⁵⁶Fe 4.461, 2.261 GeV e2a experiment data Other data available ³He, ⁴He, C, Fe 1.1 GeV

(e,e'p) E_{Cal}, (e,e') E_{QE} and (e,e'p) E_{QE} Fraction of events reconstructed to within 5% of the beam energy

	2.2 GeV		4.4GeV	
	E _{QE} 1e	E _{Cal} 1e1p	E _{QE} 1e	E _{Cal} 1e1p
³ He	33	56	26	47
⁴ He	25	47	20	39
¹² C	22	40	15	35
⁵⁶ Fe	17	26	10	23

From 0.1 to 0.56 fraction of events reconstruct to within 5% of beam energy.

Fraction of events reconstructed in different energy bins with $p_{\perp} > 0.2 \text{ GeV}$

2 0 2 0			
	Ecal	¹² C	⁵⁶ Fe
	1.75-2	0.117 ± 0.001	0.136 ± 0.001
	1.5-1.75	0.096 ± 0.001	0.127 ± 0.001
_	1.25-1.5	0.067 ± 0.001	0.109 ± 0.002
	1-1.25	0.042 ± 0.001	0.082 ± 0.002
	0.75-1	0.023 ± 0.001	0.048 [±] 0.002

2 C d l

E _{Call}	¹² C	⁵⁶ Fe
3.5-4	0.129 ±0.005	0.141 ± 0.005
3-3.5	0.106 ± 0.006	0.041 ± 0.007
2.5-3	0.057 ±0.007	0.104 ± 0.007
2-2.5	0.032 ± 0.007	0.077 ± 0.009
1.5-2	0.022 ±0.007	0.05 ±0.01

4 GeV

Summary

1. The first use of electron data to test neutrino energy reconstruction algorithms

- select zero-pion events to enhance quasi-elastic signal
 - \diamond Subtract for undetected few protons
 - \diamond Subtract for undetected 1 pion events
- just using scattered lepton (E_{QE})
 - ♦ used in Cherenkov-type neutrino detectors
- total energy of electron plus proton (E_{Cal})
 - \diamond used in calorimetric neutrino detectors

2. Only 0.1-0.56 of events reconstruct to within 5% of the beam energy

- better for lighter nuclei
- improved by a transverse momentum cut

3. First preliminary attempt to quantify the impact of this work on oscillation analysis

presented by L. Weinstein (previous talk).

4. Comparison to models to be presented by Afroditi (next talk).

- 5. Work to be done before submitting the analysis note
 - Need to subtract for undetected few pion events
 - Finalize error calculations
- 6. Work in progress
 - extend analysis to other types of events
 - more targets and energies
 - Proposal "Electrons for Neutrinos" conditionally approve by PAC 45.

Chris Marshal (LBL)

Afroditi Papadopoulou (MIT@FNAL)

Fractional Energy feed down spectra

eA

-NEUT

2.2 GeV

-0.8 -0.6

- GENIE

⁵⁶Fe(e,e'p)

0.45E

0.4E

0.3

0.2E

0.15E

0.1Ē

0.35

Adi Ashkenazi (MIT@FNAL)

E, frac. residual

$oldsymbol{ heta}$ and $oldsymbol{arPhi}$ distributions

E2a ¹²C (e,e') and (e,e'p) 2.261 GeV

Fraction of events reconstructed in different energy bins with $p_{\perp} > 0.2$ GeV

2 GeV

	Ecal	¹² C		⁵⁶ Fe	
	1.75-2	0.117 ± 0.001	0.13	6±0.001	
	1.5-1.75	0.096 ± 0.001	0.12	7 ± 0.001	
	1.25-1.5	0.067 ± 0.001	0.10	9 ± 0.002	
	1-1.25	0.042 ± 0.001	0.08	2 ± 0.002	
	0.75-1	0.023 ± 0.001	0.04	8±0.002	
0	Fractional	Energy feed	dov	vn spectra	1
0.4	5 ⁶ Fe(e, 4 2.2 Ge	e'p) V NEU	т		
0.2	3 3 25 2	GEN	NIE		
0.1 0 0.0	0.15 0.15 0.15 0.15 eA eB				
•Compared $E_{\rm rec}$ for eA to $E_{\rm rec}$ for vA					
•Used 2.26 GeV eA $E_{\rm rec}$ for all incident energies					
•Threw events with vA Genie					
	•Reconstruct with vA Neut or eA data				

4 GeV

Ecall	¹² C	⁵⁶ Fe
3.5-4	0.129 ±0.005	0.141 ± 0.005
3-3.5	0.106 ±0.006	0.041 ± 0.007
2.5-3	0.057 ±0.007	0.104 ± 0.007
2-2.5	0.032 ±0.007	0.077 ± 0.009
1.5-2	0.022 ±0.007	0.05 ±0.01

- \diamond Statistical error due to the amount of the analyzed data
- Systematic error due to imperfect geometrical acceptance (to be studdied)
- \diamond Errors of the weights for subtraction of undetected pions and protons

-Statistical error due to the number of rotations is kept less than 1% with sufficient number of rotation (is not included in error calculation) -Systematic error due to the dependence of the cross section on the angle between $(\vec{p}_e, \vec{p}_{e'})$ and (\vec{q}, \vec{p}_{π}) or $(\vec{q}, \vec{p}_{\text{prot}})$ planes (is small and is being studded)