

Electrons for Neutrinos Simulation

Afroditi Papadopoulou CLAS Summer Collaboration Meeting July 12, 2018

Motivation

Neutrino Oscillation Analysis

Neutrino Oscillation Analysis

Motivation

Neutrino Oscillation Analysis

Electrons for Neutrinos!

Why?

*CLAS@JLab

****Millions of triggers**

Target	1.161 GeV	2.261 GeV	4.461 GeV
³ He	141	217	186
⁴ He	-	333	445
¹² C	62	238	310
⁵⁶ Fe	-	23	30
CH2	10	35	21
Empty cell	19	69	33

e2a Data Analysis Strategy

 →Select QE-like (e,e'p) events.
→ Reweight by e-N / v-N cross-section ratio.
→ Analyze them as "neutrino data".
→ Compare to event generator predictions.
→ Identify parts in phase-space with good agreement.

$C^{12}(e, e'p)@E = 2.261GeV$

 $\hookrightarrow Only \ 1 \ proton$ $\hookrightarrow No \ charged \ or \ neutral \ pions$ $<math display="block"> \hookrightarrow Q^2 > 0.5 GeV$ $\hookrightarrow W < 2 \ GeV$ $\hookrightarrow |x_B - 1| < 0.2$ $\hookrightarrow Division \ by \ the \ Mott \ cross-section$

Significant differences

Even around the QE peak.

Significant differences

In the low energy regime.

Transverse Missing Momentum

Underestimation in the high P_{\perp}^{miss} regime.

10/23

Energy Reconstruction

Energy Reconstruction Methods

Leptonic Method

Only scattered lepton assuming QE scattering.

Cherenkov Detectors

Electrons & Pions. No protons or neutrons.

Calorimetric Method

Using all the particles in the final state.

Tracking Detectors

Charged Particles & π^0 . Progress towards neutrons (ANNIE).

Leptonic Energy Reconstruction

Calorimetric Energy Reconstruction

All Final State Particles

$$E_{cal} = E_l + \Sigma T_p + \epsilon + \Sigma E_{\pi}$$

Much broader distributions from CLAS Data.

GENIE Event Generator Development

Standard Candle \rightarrow Inclusive Analysis On ^{12}C

Available Nuclei

³*He*, ⁴*He*, ¹²*C*, ⁵⁶*Fe*

Available Energies

1.1 GeV, 2.261 GeV, 4.461 GeV

Thank you!

Mariana Khachatryan (ODU@JLab)

Afroditi Papadopoulou (MIT@FNAL)

Adi Ashkenazi (MIT@FNAL)

Backup Slides

Motivation

Reconstruction from the final state lepton

Incoming Energy Reconstruction

Highly model & parameter dependent.

