

Stefan Diehl

University of Connecticut Justus Liebig University Giessen

Introduction

- Physics motivation
- Partcile identification
- Preliminary results

- run 3432 (~ 1400 files)
 - → 10.6 GeV
 - \rightarrow solenoid -100%, torus -100%
 - \rightarrow cooked with coatjava v. 5b.3.3

Physics Motivation

- The 3D nucleon structure can be described with GPDs and TMDs
- The **SIDIS** cross section can be expressed in terms of model independent structure functions:

$$\frac{d\sigma}{dx_B \, dQ^2 \, dz \, d\phi_h \, dp_{h\perp}^2} = K(x, y, Q^2) \Big\{ F_{UU,T} + \varepsilon F_{UU,L} \\ + \sqrt{2 \, \varepsilon (1 + \varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} + \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2 \, \varepsilon (1 - \varepsilon)} \sin \phi_h F_{LU}^{\sin \phi_h} \Big\} \\ F_{LU}^{\sin \phi} = \frac{2M}{Q} \mathcal{C} \left(-\frac{\hat{\mathbf{h}} \cdot \mathbf{k_T}}{M_h} \left(xeH_{\perp}^{\perp} + \frac{M_h}{M} f_1 \frac{\tilde{G}^{\perp}}{z} \right) + \frac{\hat{\mathbf{h}} \cdot \mathbf{p_T}}{M} \left(xg^{\perp} D_1 + \frac{M_h}{M} h_1^{\perp} \frac{\tilde{E}}{z} \right) \right) \\ \text{twist-3 pdf} \quad \text{twist-3 FF} \quad \text{twist-3 t-odd} \quad \text{boer-Mulders} \\ \text{unpolarized dist.} \quad \text{function} \quad \text{for the second dist.} \\ \text{function} \quad \text{function} \quad \text{for the second dist.} \\ \text{function} \quad \text{function} \quad \text{for the second dist.} \\ \text{function} \quad \text{function} \quad \text{for the second dist.} \\ \text{function} \quad \text{function} \quad \text{for the second dist.} \\ \text{function} \quad \text{function} \quad$$

Physics Motivation

$$BSA = \frac{d\sigma^{+} - d\sigma^{-}}{d\sigma^{+} + d\sigma^{-}} = \frac{A_{LU}^{\sin\phi} \sin\phi}{1 + A_{UU}^{\cos\phi} \cos\phi + A_{UU}^{\cos(2\phi)} \cos(2\phi)}$$

$$\approx A_{LU}^{\sin\phi} \sin\phi$$
• BSA is a good tool to extract the "moments"

$$BSA_{i} = \frac{1}{P_{e}} \frac{N_{i}^{+} - N_{i}^{-}}{N_{i}^{+} + N_{i}^{-}}$$

• Helicity independent acceptance terms cancel out in the ratio!

Particle ID

- A clean particle ID is the key for all SIDIS analyses
 - \rightarrow There is no additional event selection criterium
 - \rightarrow Each particle should have a clear ID

 \rightarrow It may be better to reject a particle than to assign it a wrong PID

PCAL

a) Electron ID

- \rightarrow Based on eventbuilder PID
 - + fiducial cuts for PCAL
 - + fiducial cuts for DC
 - + Calorimeter sampling fraction cut limitted to real 3σ region
 - + E > 1.5 GeV @ 10.6 GeV
 - + relatively wide z vertex cut

b) Photon ID

 \rightarrow Based on standard PID

DC region1

+ fiducial cuts for PCAL + β > 0.95

c) Hadron Particle ID

i) Fiducial cuts on the 3 Driftchamber regions

ii) Particle selection based on β vs p correlation

CLAS12 Collaboration Meeting, July 2018, JLAB

07/12/2018

Maximum Likelihood Particle ID

Simple β vs p cut: particles are double assigned in the overlap region
 Assignment of each particle based on statistical probabilities

$$P(\beta) = \frac{1}{\sqrt{2\pi\sigma}} \cdot \exp\left(-\frac{1}{2}\left(\frac{\beta-\mu}{\sigma}\right)^2\right)$$

Consider: Particles have momentum dependend population fractions

$$n_{\pi^{+}}(p) = \frac{N_{\pi^{+}}(p)}{N_{\pi^{+}}(p) + N_{P}(p) + N_{K^{+}}(p)}$$

- \rightarrow Calculate p(β) for each particle species
- \rightarrow Assign particle to species with the highest probability
- \rightarrow Calculate the confidence level for the particle species
- \rightarrow Check if particle is within the 3 sigma region (conf. lev. > 0.27%)

Population ratio for detected particles (outbending)

Stefan Diehl, UConn

CLAS12 Collaboration Meeting, July 2018, JLAB

Maximum Likelihood Particle ID

CLAS12 Collaboration Meeting, July 2018, JLAB

07/12/2018

<u>DIS cut</u>: $Q^2 > 1 \text{ GeV}$

BSA for a single detected pion

binned in z, x, pt and Q²

Summary and Outlook

- SIDIS BSA at 10.6 GeV shows a similar behaviour as at 5.5 GeV (CLAS 6)
- Cuts on z > 0.3 and z < 0.7 have to be added for the Q², p_T and x binning
 → z > 0.3 removes the "target fragmentation region"
 → z < 0.7 removes contamination by pions from exclusive channels

Expected kinematic coverage:		CLAS 6	CLAS 12
	X _B	0.1 - 0.6	0.1 - 0.7
	p _T	0 - 1 GeV	0 - 3 GeV
	Q ²	1 - 4 GeV ²	1 (1.5) - 8 GeV ²

- ~ 1440 files of run 3432 have been used (0.3 % of spring run)
 → 5%/ 10%/ 25%/ 100% of spring run will reduce errors by a factor 4/6/9/18
- LTCC can provide better Pion/Kaon separation from 3.5 GeV to 9 GeV
 → Only 4 sectors available (only 1 filled with C₄F₁₀)
- Theoretical modells will be provided by Peter Schweitzer (UCONN)