## Studies of $\pi^0$ multiplicities in SIDIS with CLAS12

G. Angelini (GW), Harut Avakian (JLab)

CLAS Collaboration Meeting, 12 July 2018

- Introduction
- MC-generators
- Advantages of  $\pi^0$  SIDIS
- Comparing SIDIS generated (PEPSI) with data
- $\pi^0$  PID, Efficiencies and background
- Summary





## **SIDIS Kinematics**



 $F_{UU,T}(x,z,P_{hT}^{2},Q^{2}) = \sum_{a} \mathcal{H}_{UU,T}^{a}(Q^{2};\mu^{2}) \int d\mathbf{k}_{\perp} \, dP_{\perp} \, f_{1}^{a}\left(x,\mathbf{k}_{\perp}^{2};\mu^{2}\right) D_{1}^{a \to h}\left(z,P_{\perp}^{2};\mu^{2}\right) \delta\left(z\mathbf{k}_{\perp}-P_{hT}+P_{\perp}\right)$ 





## Multiplicities in SIDIS

$$m_{N}^{h}(x, z, P_{hT}^{2}, Q^{2}) = \frac{d\sigma_{N}^{h}/dxdzdP_{hT}^{2}dQ^{2}}{d\sigma_{\text{DIS}}/dxdQ^{2}}$$

$$\frac{d\sigma}{dx\,dQ^{2}\,d\psi} = \frac{2\alpha^{2}}{xQ^{4}}\frac{y^{2}}{2\,(1-\varepsilon)} \left\{ F_{UU,T}(x,Q^{2}) + \varepsilon F_{UU,L}(x,Q^{2}) \right\}.$$

$$F_{UU,T}(x,Q^{2}) = F_{T}(x,Q^{2}) = 2xF_{1}(x,Q^{2}) = \sum_{h} \int z\,dzF_{UU,T}(x,z,Q^{2})$$

Kinamtical factors cancel leaving the ratio of structure functions:

$$\frac{d\sigma}{dx \, dQ^2 \, d\psi \, dz \, d\phi_h \, d|\mathbf{P}_{h\perp}|^2} = \frac{\alpha^2}{xQ^4} \frac{y^2}{2\left(1-\varepsilon\right)} \left(1+\frac{\gamma^2}{2x}\right) \left\{F_{UU,T}+\varepsilon F_{UU,L}\right\}.$$

$$F_{UU,T}(x, z, Q^2) = \int d^2 \vec{P}_{h,\perp} F_{UU,T}(x, z, P_{h,\perp}^2, Q^2)$$

$$\text{SIDIS}$$

$$m_N^h(x, z, P_{hT}^2, Q^2) = \frac{\pi F_{UU,T}(x, z, P_{hT}^2, Q^2) + \pi \varepsilon F_{UU,L}(x, z, P_{hT}^2, Q^2)}{F_T(x, Q^2) + \varepsilon F_L(x, Q^2)}$$





## Multiplicities in SIDIS

For simple Gaussian distributions in  $k_{\rm T}$  and  $p_{\rm T}$ 

$$\begin{split} m_N^h(x,z,\boldsymbol{P}_{hT}^2) &= \frac{\pi}{\sum_a e_a^2 f_1^a(x)} \\ &\times \sum_a e_a^2 f_1^a(x) D_1^{a \to h}(z) \; \frac{e^{-\boldsymbol{P}_{hT}^2 / \left(z^2 \langle \boldsymbol{k}_{\perp,a}^2 \rangle + \langle \boldsymbol{P}_{\perp,a \to h}^2 \rangle\right)}}{\pi \left(z^2 \langle \boldsymbol{k}_{\perp,a}^2 \rangle + \langle \boldsymbol{P}_{\perp,a \to h}^2 \rangle\right)} \end{split}$$

For p0 at large x, when sea contribution can be neglected the ratio  $\underline{e'\pi^0 X/e' X}$  should follow z-dependence of the fragmentation function (after integration over P<sub>T</sub>)

$$\sigma_p^{eX} \propto 4u + d + \dots$$
  
$$\sigma_p^{\pi^0} \propto 4u D^{u \to \pi^0} + dD^{d \to \pi^0} + \dots$$
  
$$D^{u \to \pi^0} \approx D^{d \to \pi^0}$$





# π0 SIDIS: advantages-I

1) suppression of higher-twist contributions at large hadron energy fraction (particularly important at JLab energies where small z events are contaminated by target fragmentation)



 $\pi^0$ 

2) the absence of  $\rho 0$  production which complicates the interpretation of the charged single-pion data

3) the fragmentation functions for u and d quarks to  $\pi 0$  are the same in first approximation

4) suppression of spin-dependent fragmentation for  $\pi 0$  s, due to the roughly equal magnitude and opposite sign of the Collins fragmentation functions for up and down





# π0 SIDIS: advantages-II

5) longitudinal photon contribution, is suppressed in exclusive neutral pions production with respect to the transverse photon sontribution, which is higher twist, suggesting that longitudinal photon contribution to SIDIS  $\pi 0$  will also be suppressed.

6) at large x , where the sea contribution is negligible,  $\pi 0$  multiplicities and double spin asymmetries will provide direct info on the fragmentation function of u and d -quarks to  $p\pi 0$ .

7)  $\pi$ 0 data has better uniformity and smaller variations of averages of  $\mathbf{P}_{T}$  with  $\mathbf{x}$  due to correlations between longitudinal and transverse momentum of quarks and hadrons

8) Particle ID (invariant mass of 2 photons) very different from charged pions





**π**<sup>0</sup>

# Generators for MC simulations

- Full event generators (PYTHIA, PEPSI, LEPTO)
- Dedicated event generators (e'hX,e'hhx,...)

Types of event generators:

- 1) Providing events with cross section
  - 1) pros: easier defined systematics, can be directly compared with data
  - 2) cons: require huge statistics to provide acceptance functions for kinematic edges with reasonable error bars.
- 2) Phase space with realistic x-sections provided as weight factors.
  - pros: acceptance for all acceptable kinematics can be provided with small error bars, much faster, easy to incorporate different models
  - 2) cons: more efforts to define systematics, need weighting



#### Candidate for first SIDIS publication: ep $\rightarrow$ e' $\pi^0 X$

<u>e' $\pi^0$ X/ e'X ratio</u> (ratio of semi-inclusive  $\pi^0$  to inclusive electron): need good control over acceptance for neutrals, radiative corrections





CLAS12: SIDIS-MC vs Data (200 files ~10% of 1 run)

In a wide kinematical range ( $\theta_e$ >12) scattered lepton distributions are consistent with SIDIS-MC (Lund)



# Identification of pi0



- Higher the minimum energy cut, less background
- Background well described in the SIDIS MC





### Understanding the background under $\pi 0$ mass



- The peak (and surrounding) are dominated by single and 2 pi0 events (red and blue) both for 0.4 GeV and 0.7 GeV min. energy cuts (may be more enhanced after better fid. cuts)
- Small fraction of events comes from radiative gammas (dashed red) and multi-photon events (dashed blue)





## **Kinematical distributions**



- Kinemtical distributions well described in the SIDIS MC
- Rec efficiency of pi0s with Eg>0.4 is ~15% at small angles





## Understanding the background under $\pi 0$ mass

Egmin>0.4 GeV

Ratio of data to clasDIS MC



Sector dependence from Run 4205

- Sectors agree within error bars
- More  $\pi^0$ s in MC at higher energy due to excess of exclusive events in MC





## e' π<sup>0</sup>X: clas12 vs SIDIS-MC







clas12: e' π<sup>0</sup>X multiplicity



- Ratio <u>e' $\pi^0$ X/ e'X</u> follows z-dependence of the fragmentation function
- Multiplicity consistent with HERMES, clas6, LO FFs
- Improve the fiducial cuts and estimate systematics due to various cuts





# Summary

- Ratio <u>e'π<sup>0</sup>X/ e'X</u> provides direct info on the z,P<sub>T</sub>-dependence of the fragmentation function
- Two different version of MC developed for comparison with data
- There is a good agreement of MC with  $\underline{\pi^0}$ -distributions from data in certain kinematics for electrons (theta>12 degree)
- First preliminary <u>π<sup>0</sup></u> multiplicity extracted from 0.5% data is consistent with LO FF calculations
- Development of the analysis procedure in progress
- Collaboration with theorists in Jlab (A. Signori, N. Sato) aiming at extraction of underlying multidimensional (z,P<sub>T</sub>) fragmentation functions from measured multiplicities for pions





## Support slides...





## Generating SIDIS

Full event generator (PEPSI)

N<sub>tracks</sub> A N I-pol N-pol I-ID E<sub>beam T</sub> T-ID process-ID x-section

|    |     |    |      |    |     | -       |    |         | · ·     |   |          |         |        |        |        |
|----|-----|----|------|----|-----|---------|----|---------|---------|---|----------|---------|--------|--------|--------|
|    |     | 13 | 1    | 1  | 0.0 | 1.0     | 11 | 10.600  | 2212    | 1 | 0.805275 | 9E+05   |        |        |        |
| 1  | -1. | 21 | 11   | 0  | 0   | 0.000   | 0  | 0.0000  | 10.6000 |   | 10.6000  | 0.0005  | 0.0000 | 0.0000 | 0.0000 |
| 2  | 1.  | 21 | 2212 | 0  | 0   | 0.000   | 0  | 0.0000  | 0.0000  |   | 0.9383   | 0.9383  | 0.0000 | 0.0000 | 0.0000 |
| 3  | 0.  | 21 | 22   | 1  | 0   | -0.9974 | 4  | -0.7292 | 3.5178  |   | 3.4109   | -1.5059 | 0.0000 | 0.0000 | 0.0000 |
| 4  | -1. | 1  | 11   | 1  | 0   | 0.9974  | 4  | 0.7292  | 7.0822  |   | 7.1891   | 0.0005  | 0.0000 | 0.0000 | 0.0000 |
| 5  | 1.  | 13 | 2    | 0  | 6   | -1.0092 | 2  | -0.9040 | 3.2382  |   | 3.5102   | 0.0056  | 0.0000 | 0.0000 | 0.0000 |
| 6  | 0.  | 13 | 2103 | 2  | 0   | 0.011   | 7  | 0.1747  | 0.2796  |   | 0.8389   | 0.7713  | 0.0000 | 0.0000 | 0.0000 |
| -7 | 1.  | 12 | 2    | 5  | 9   | -1.0092 | 2  | -0.9040 | 3.2382  |   | 3.5102   | 0.0056  | 0.0000 | 0.0000 | 0.0000 |
| 8  | 0.  | 11 | 2103 | 6  | 9   | 0.011   | 7  | 0.1747  | 0.2796  |   | 0.8389   | 0.7713  | 0.0000 | 0.0000 | 0.0000 |
| 9  | 0.  | 11 | 92   | 7  | 10  | -0.9974 | 4  | -0.7292 | 3.5178  |   | 4.3492   | 2.2391  | 0.0000 | 0.0000 | 0.0000 |
| 10 | Ζ.  | 11 | 2224 | 9  | 12  | -0.772  | 9  | -1.0806 | 3.4710  |   | 3.9069   | 1.2047  | 0.0000 | 0.0000 | 0.0000 |
| 11 | -1. | 1  | -211 | 9  | 0   | -0.224  | 5  | 0.3514  | 0.0468  |   | 0.4422   | 0.1396  | 0.0000 | 0.0000 | 0.0000 |
| 12 | 1.  | 1  | 2212 | 10 | 0   | -0.5843 | 3  | -0.9049 | 2.3668  |   | 2.7645   | 0.9383  | 0.0000 | 0.0000 | 0.0000 |
| 13 | 1.  | 1  | 211  | 10 | 0   | -0.1886 | 6  | -0.1757 | 1.1042  |   | 1.1425   | 0.1396  | 0.0000 | 0.0000 | 0.0000 |

 $\frac{d\sigma}{dx \, dQ^2 \, d\psi \, dz \, d\phi_h \, d|P_{h\perp}|^2} = \frac{\alpha^2}{x Q^4} \frac{y^2}{2 \left(1-\varepsilon\right)} \left(1+\frac{\gamma^2}{2x}\right) \left\{F_{UU,T}+\varepsilon F_{UT,L}\right\}.$ 







#### Generating SIDIS with dedicated e'piX-generator

#### **Dedicated SIDIS generator**

|       | 2 | 1   | 1 | 1.0 | 1.0 11  | 10.600  | 2212   | 1 0.1108596 | 5E-01  |         |         |         |
|-------|---|-----|---|-----|---------|---------|--------|-------------|--------|---------|---------|---------|
| 1 -1. | 1 | 11  | 0 | 0   | -0.7583 | -0.7440 | 3.9571 | 4.0972      | 0.0005 | -0.0174 | 0.0305  | 1.3425  |
| 21.   | 1 | 211 | 0 | 0   | 0.8698  | -0.6332 | 3.2529 | 3.4291      | 0.1396 | -0.0174 | 0.0305  | 1.3425  |
|       | 2 | 1   | 1 | 1.0 | 1.0 11  | 10.600  | 2212   | 1 0.4220764 | 4E-02  |         |         |         |
| 1 -1. | 1 | 11  | 0 | 0   | -1.1716 | 0.9665  | 3.2259 | 3.5656      | 0.0005 | 0.0016  | -0.0436 | -1.5889 |
| 21.   | 1 | 211 | 0 | 0   | 0.1630  | -0.4267 | 3.5986 | 3.6302      | 0.1396 | 0.0016  | -0.0436 | -1.5889 |

#### COATJAVA 4a.8.4

**GEMC** 

|                         | ,,        | · · · · ·        |                                                              |
|-------------------------|-----------|------------------|--------------------------------------------------------------|
| bank": "MC::Event",     |           |                  |                                                              |
| group": 41,             |           |                  |                                                              |
| info": "Lund header ban | k for the | generated event" | ,                                                            |
| items": [               |           |                  |                                                              |
| {"name":"npart",        | "id":1,   | "type":"int16",  | "info":"number of particles in the event"},                  |
| {"name":"atarget",      | "id":2,   | "type":"int16",  | "info":"Mass number of the target"},                         |
| {"name":"ztarget",      | "id":3,   | "type":"int16",  | "info":"Atomic number oif the target"},                      |
| {"name":"ptarget",      | "id":4,   | "type":"float",  | "info":"Target polarization"},                               |
| {"name":"pbeam",        | "id":5,   | "type":"float",  | "info":"Beam polarization"},                                 |
| {"name":"btype",        | "id":6,   | "type":"int16",  | "info":"Beam type, electron=11, photon=22"},                 |
| {"name":"ebeam",        | "id":7,   | "type":"float",  | "info":"Beam energy (GeV)"},                                 |
| {"name":"targetid",     | "id":8,   | "type":"int16",  | "info":"Interacted nucleaon ID (proton=2212, neutron=2112"}, |
| {"name": "nrocessid"    | "id" • 9  | "type":"int16"   | "info": "Process ID"}                                        |
| {"name":"weight",       | "id":10,  | "type":"float",  | "info":"Event weight"}                                       |
|                         |           |                  |                                                              |

|        | LUND Header                |        | LUND Particles              |  |  |  |  |
|--------|----------------------------|--------|-----------------------------|--|--|--|--|
| column | quantity                   | column | quantity                    |  |  |  |  |
| 1      | Number of particles        | 1      | index                       |  |  |  |  |
| 2      | Number of target nucleons  | 2      | lifetime                    |  |  |  |  |
| 3      | Number of target protons   | 3      | type (1 is active)          |  |  |  |  |
| 4      | Target Polarization        | 4      | particle ID                 |  |  |  |  |
| 5      | Beam Polarization          | 5      | parent index                |  |  |  |  |
| 6      | beam PID (electron=11,     | 6      | index of the first daughter |  |  |  |  |
|        | photon=22)                 | 7      | momentum x [GeV]            |  |  |  |  |
| 7      | beam energy                | 8      | momentum y [GeV]            |  |  |  |  |
| 8      | target nucleon ID          | 9      | momentum z [GeV]            |  |  |  |  |
| 9      | process ID                 | 10     | Е                           |  |  |  |  |
| 10     | event weight/cross section | 11     | mass                        |  |  |  |  |
|        |                            | 12     | vertex x [cm]               |  |  |  |  |
|        |                            | 13     | vertex y [cm]               |  |  |  |  |
|        |                            | 14     | vertex z [cm]               |  |  |  |  |











## **Radiative SIDIS**

Akushevich&Ilyichev in progress

$$e(k_1,\xi) + n(p,\eta) \to e(k_2) + h(p_h) + u(p_u) + \gamma(k),$$
  $\delta^4(k_1 + p - k_2 - p_h - p_h) = 0$ 





# $\pi^0$ -Multiplicities in SIDIS: clas6



pi0-multiplicities consistent in a wide range of beam energies, indicating pi0 production is not sensitive to higher twist effects



#### CLAS12-MC vs theory: defining variables



### Consistency check for z and $P_T$







$$P_{h} \cdot k_{f} = \frac{1}{2} M_{hT} M_{fT} \left( e^{y_{f} - y_{h}} + e^{y_{h} - y_{f}} \right)$$

and

$$P_h \cdot k_i = \frac{1}{2} M_{hT} M_{iT} (e^{y_i - y_h} - e^{y_h - y_i}).$$



 $R(y_{\rm h}, z_{\rm h}, x_{\rm bj}, Q) \equiv \frac{P_h \cdot k_{\rm f}}{P_h \cdot k_{\rm i}},$ <br/>for which we identify

Jefferson Lab

 $R(y_h, z_h, x_{bj}, Q) \ll 1$ : collinear to outgoing quark,  $R(y_h, z_h, x_{bj}, Q)^{-1} \ll 1$ : collinear to incoming quark.

