DEEPLY VIRTUAL COMPTON SCATTERING WITH JEFFERSON LAB'S CLAS12 AT 6.4 GEV POLARIZED ELECTRON BEAM

Joshua Artem Tan

on behalf of the CLAS Collaboration Kyungpook National University and Jefferson Lab

OUTLINE

I. Introduction

II. Experiment

III. Analysis

IV. Results

V. Summary and Future Plans

I. INTRODUCTION

GENERALIZED PARTON DISTRIBUTIONS

DEEPLY VIRTUAL COMPTON SCATTERING

DVCS kinematics: scattering plane (light blue) and reaction plane (cyan) DVCS accessing GPDs

Deeply virtual Compton scattering (DVCS) provides the cleanest access to chiral-even GPDs: H^q , \tilde{H}^q , E^q , and \tilde{E}^q .

DVCS AND BETHE-HEITLER

Amplitude of photon production: $\mathcal{T}^2 = |\mathcal{T}_{\text{DVCS}} + \mathcal{T}_{BH}|^2 = |\mathcal{T}_{\text{DVCS}}|^2 + |\mathcal{T}_{BH}|^2 + \mathcal{I}$ Beam spin asymmetry for unpolarized target: $A_{\rm LU}(\phi) \propto s_{1.\rm unp}^{\mathcal{I}} \sin(\phi)$ $A_{\rm LU}(\phi) = \frac{d\sigma^{\uparrow}(\phi) - d\sigma^{\downarrow}(\phi)}{d\sigma^{\uparrow}(\phi) + d\sigma^{\downarrow}(\phi)} = \frac{1}{\varepsilon} \frac{N^{\uparrow}(\phi) - N^{\downarrow}(\phi)}{N^{\uparrow}(\phi) + N^{\downarrow}(\phi)}$ $A_{\rm LU}(\phi) \propto \Im \left\{ F_1 \mathcal{H} + \frac{x_B}{2 - x_B} (F_1 + F_2) \widetilde{\mathcal{H}} + \frac{t}{4M^2} F_2 \mathcal{E} \right\}$ Compton form factors $\mathcal{H}, \widetilde{\mathcal{H}}$ and \mathcal{E} : $\{\mathcal{H}, \mathcal{E}\}(\xi, t, Q^2) = \sum_{q} \int_{-1}^{1} dx C_q^{(-)}(\xi, x) \{H^q, E^q\}(x, \xi, t, Q^2)$ $\widetilde{\mathcal{H}}(\xi, t, Q^2) = \sum_{q} \int_{-1}^{1} dx C_q^{(+)}(\xi, x) \widetilde{H}^q(x, \xi, t, Q^2)$

II. EXPERIMENT

CEBAF at 12 GeV and CLAS12 $\,$

CEBAF 12 GeV Upgrade

CLAS12 Detector System

First DVCS experiment with CLAS12 was performed in spring of 2018 at 6.4 GeV and 10.6 GeV polarized beam energies, employing liquid hydrogen as production target.

III. ANALYSIS

$ep \rightarrow e'p'\gamma$ EVENT SELECTION

Exclusive events with 1 FD *e*, 1 CD *p*, and 1 γ were selected. 2 GeV cut on q' and 1 GeV² cut on Q^2 cleans up for single photoelectron events.

RECONSTRUCTED *e* **KINEMATICS**

Electrons were selected from the forward detector subsystem. 2 GeV cut on W is implemented to exclude other processes.

RECONSTRUCTED p KINEMATICS

Protons were selected from the central detector subsystem.

Reconstructed γ Kinematics

A significant portion of photons were detected from the forward tagger.

 $e, p, AND \gamma AND X_e, X_p, AND X_{\gamma}$

The absence of $ep \rightarrow e'p'\gamma$ missing mass cut results to background i n the $\Delta\theta_{cone}$, X_e , X_p , and X_γ distributions.

KINEMATIC VARIABLES

The missing mass distribution shows that in the data set used $E_{\gamma} > 3 \text{ GeV}$ implies $|\vec{p}_{e'}| > 1 \text{ GeV}$ and $Q^2 > 1 \text{ GeV}^2$.

e MOMENTUM CORRECTION

Electron momentum correction based on the elastic peak is expected to improve the missing mass distribution.

IV. RESULTS

BEAM SPIN ASYMMETRY

With the available statistics, missing mass cut decreases the qualit y of the fit (bottom).

BEAM SPIN ASYMMETRY FROM CLAS DVCS

F. X. Girod. PhD Thesis, SPhN-Saclay, (2006).

V. SUMMARY AND FUTURE PLANS

SUMMARY AND FUTURE PLANS

The discussions presented can de summarized as follows.

- Beam spin asymmetry from DVCS interfering with BH provides access to the GPDs H^q , \tilde{H}^q and E^q .
- First DVCS experiment with CLAS12 were performed at 6.4 GeV and 10.6 GeV polarized electron beam, employing unpolarized liquid hydrogen target.
- Exclusive events were selected and photon energy and Q^2 cuts significantly lowered the background of single photoelectron events.

The following steps will be performed in the near future:

- Kinematic corrections and combinatorics in event selection will be implemented.
- Perform DVCS and $DV\pi^0P$ simulation-reconstruction chain for further corrections.
- Beam spin asymmetry will be extracted for various kinematic bins.

THANK YOU!!!