

TORUS Field Mapping Update

Joseph Newton CLAS Collaboration Meeting July 11, 2018

Objectives and Physics Specifications

- TORUS consists of six superconducting coils which produces a symmetric, mainly azimuthal field
- Joint-effort by Jefferson Lab and Fermilab
- Design allows for large acceptance of forward going particles (50% acceptance at 5 degrees from the beam axis)
- Maximum current is at 3770 A with the full field at 3.58 T

Fig. 2. In-bending track in the presence of the TORUS nominal field configuration

Fig. 1. Schematic of TORUS magnet and direction of the field lines

• Must understand the deviations of the coil positions and angular orientations due to manufacturing and installation process

TORUS Measurement and Fitting Procedure

- Measure all components of the TORUS field at 24 positions in the XY plane along 40 positions along the z-axis and calculate the "distortion field"
- Minimize a chi-squared function that compares the measured and modeled "distortion fields" caused by the anticipated movements of the six coils

Visual model of the Hall probe being pushed by a motor along the beam axis inside a non-magnetic Carbon tube

- Measured data was compared to pre-calculated fields where coils were intentionally moved by a unit distance laterally offset, downstream, and radially outward from the bore.
- Using MINUIT, the coil movements from the designed position are determined by calculating the unit coefficients within the chi-squared function

$$\chi^{2} = \sum_{pts=1}^{24} \sum_{dim=1}^{3} \left(\frac{\Delta \mathbf{B}_{\text{meas}}(\text{dim}, \text{pts}) - \Delta \mathbf{B}_{\text{calc}}(\text{dim}, \text{pts})}{\delta B(dim)}\right)^{2}$$

Improvement of new field map (January 2018) compared to original map

Fig. 4. Large component of the TORUS field at Holes A-D as measured in all six sectors.

The x-component, especially at Holes A and C, are viable ways of checking for systematic errors

Sector 1

Sector 2

Sector 3

Sector 4

Sector 5 Sector 6

Fig. 5. X-component of the TORUS field at Holes A-D in Sectors 1-6.

Production of TORUS Models

- Software -> Opera
- Produced By -> Dr. Probir Ghoshal
- Measured Data
- Nominal Model
- Field Map For Unit Distortion #1
- Field Map For Unit Distortion #2
- Field Map For Unit Distortion #3

$$\chi^{2} = \sum_{pts=1}^{24} \sum_{dim=1}^{3} \left(\frac{\Delta \mathbf{B}_{\text{meas}}(\dim, \text{pts}) - \Delta \mathbf{B}_{\text{calc}}(\dim, \text{pts})}{\delta B(\dim)} \right)^{2}$$
$$\Delta \mathbf{B}_{meas}(\dim, pts) = \left[\mathbf{B}_{meas}(\dim, pts) - \mathbf{B}_{ideal}(\dim, pts) \right]$$
$$\Delta \mathbf{B}_{\text{calc}}(\dim, \text{pts}) = \sum_{icoil=1}^{6} \sum_{mode=1}^{3} \alpha_{mode,icoil}(\mathbf{B}_{\text{ideal}}(\dim, \text{pts}))$$

 $-\mathbf{B}_{distortion}(dim, pts, icoil, mode))$

*ROOT/C++ script attempts to minimize chi-squared function which depends on the comparison of measured data's deviation from nominal with pre-produced data from nominal

Coil 1	Radial Shift in mm	0.36185
Coil 2	Radial Shift in mm	-0.311987
Coil 3	Radial Shift in mm	-0.458769
Coil 4	Radial Shift in mm	-0.519575
Coil 5	Radial Shift in mm	2.21523
Coil 6	Radial Shift in mm	1.68347
Coil 1	Downstream Shift in mm	-0.21
Coil 2	Downstream Shift in mm	1.677
Coil 3	Downstream Shift in mm	3.0428
Coil 4	Downstream Shift in mm	4.367
Coil 5	Downstream Shift in mm	2.511
Coil 6	Downstream Shift in mm	0.236
Coil 1	Azimuthal Shift in mm	-0.250
Coil 2	Azimuthal Shift in mm	-0.408
Coil 3	Azimuthal Shift in mm	-0.728
Coil 4	Azimuthal Shift in mm	0.6067
Coil 5	Azimuthal Shift in mm	0.0660
Coil 6	Azimuthal Shift in mm	0.0198

23 47 0.217562 .67751 .04286 .36706 .51131 23668 .250904 40883 728354 606732 0660279 0198553

With shifts in azimuth, the entire coil moves translationally. There is no rotation.

Preliminary Results For Selected Z-Positions

Evolution of the Field Map

- Before January 2018: Symmetric Field Map With Relatively Simplistic Coil Shape Compared To Refined Coil Shape
- January 2018: Asymmetric Field Map With Coils Moved Inward With The Original Coil Shapes
- April 2018: Symmetric Field Map With Refined Coil Shapes
- May 2018: Asymmetric Field Map With The Refined Coil Shapes Taking Into Account The Calculated Coil Positions

Ongoing Studies and Improvement of Fit

- Interpretation of the bore data
- Testing the effect of different weighted constants for different measurement values
- Using more robust fitting algorithms and strategies with MINUIT

Conclusions

*Inner (30 cm) measurements indicate approximately a 0.5% deviation from the measured data

*Outer (46.5 cm) measurements indicate approximately a 0.05% deviation from the measured data

*Fluctuations in the inner measurement deviations are consistent with the effect of a 1.5 mm change to the outer radius of the coil shape

Acknowledgements

- Thanks to our project managers: Mac Mestayer and Renuka Rajput-Ghoshal
- Thanks to our data analyst: Joseph Newton
- Thanks to our field model producer: Probir Ghoshal
- Thanks for the work on improving Torus coil representation in model: Dave Kashy
- Thanks to our design team: Cyril Wiggins, Mike Beck, Joseph Meyers, Ruben Fair, Robert Miller, Mark Taylor, and Orlando Pastor
- Thanks to all of our shift workers from the CLAS collaboration: Harut Avagyan, Dan Carman, Jixie Zhang, Olga Cortes Beccera, Eugene Pasyuk, Stepan Stepanyan, Maurizio Ungaro, Victoria Lagerquist