By: Igor Korover

Tel Aviv University and NRCN

July 12, 2018

Study of SRC with recoil neutron detection in CLAS6

On going Data Mining analysis

Hall B, NPWG – Jefferson Lab, Newport News

Short Range Correlation

High energetic projectiles and large momentum transfer reactions probe small distances and disintegrate the SRC pair

A(e,e'pp) analysis done on eg2a run period

Detection of neutron from CLAS detector

Electromagnetic Calorimeter (EC): see Meytal Duer talk. (leading neutron detection)

Versus

Neutrons detected from TOF counters (SC) (recoil neutron detection)

Advantage: Large acceptance Better Momentum Resolution

Disadvantage: Low detection efficiency

Previous analysis with neutrons in TOF scintillators:

A <u>high precision measurement</u> of the neutron magnetic form factor using the CLAS detector

Selection of protons and electrons

Selection of electrons and protons with standard ClasTool.

Fiducial cuts identical to previous approved analyses.

Neutral Particle Identification: Veto Algorithm

Main Goal: Separate neutral from charged particles hits in the scintillators

Technical details

Gn analysis: Use of dc1 bos bank to project hits in scintillators

This analysis: dc1 bank is not available

Use tracks from DCPB and HBLA bos banks

DCPB – standard track bank HBLA – intermediate bank that store hits in each layer

<u>Step 1</u>:

Remove all hits from SCRC bos bank that correlate to tracks (DCPB bank)

Example of track that are not included in DCPB

<u>Step 2:</u>

HBLA bos bank – store hit information in each layer. If there is no hit, reconstruction code fill this gap based on adjacent hits.

Empty squares – expected hit position in each layer. Red stars – actual hits in each layer.

Missing Momentum and Neutron Momentum

8) Back to back correlation between missing and neutron momentum.

Background Counting of d(e,e'p) and d(e,e'pn) events

Efficiency is sensitive to the energy deposit cut:

Efficiency comparison

First Physical Results

Search of np-SRC from solid targets: 12C, 27Al, 56Fe, 208Pb

Step 1: Select A(e,e'p) events

- Vertex
- > Missing Momentum

 $300 \,\mathrm{MeV/c} < P_{miss} < 1 \,\mathrm{GeV/c}$

X Bjorken

Missing Mass

 $x_{B} > 1.1$

Leading proton cut

 $\frac{|p|}{|q|}$ > 0.65 and $\cos(pq)$ < 25°

 $Miss_{mass} < M_{nucl} + \pi_m < 1.1$

Step 2: A(e,e'pn) Cuts

All (e,e'p) cuts and:

- Scintillator geometry: remove 5 cm from each side
- > Time window: between 25 and 60 ns from reaction time.
- Energy deposition cut > 5 MeV

Energy deposition cut sensitivity

CM momentum example

After sensitivity tests the CM momentum as a function of missing momentum will be analyzed

A(e,e'pn) / C(e,e'pn)

Outlook

- 1) Write a detailed analysis report to be reviewed
- 2) Finalize sensitivity and Fiducial cuts
- 3) Correct extracted A(e,e'pn)/C(e,e'pn) to single charge exchange (SCX).
- 4) Extract ratios as function of missing momentum.
- 5) Extract triple to double, (e,e'pn)/(e,e'p) ratios as function of missing momentum.
- Extract CM momentum for different nuclei (high energy deposit cut).
- 7) Perform acceptance corrections for recoil neutron.