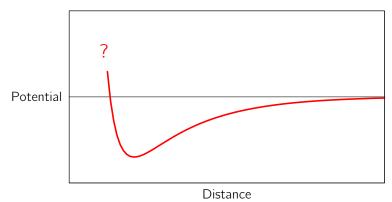
Going Beyond the Tensor Limit Using $\frac{(e,e'pp)}{(e,e'p)}$ Data

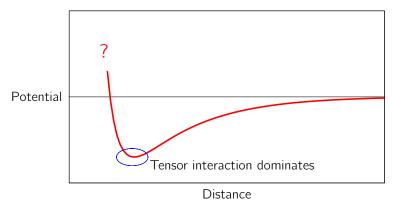
CLAS Nuclear Physics Working Group Meeting

Axel Schmidt

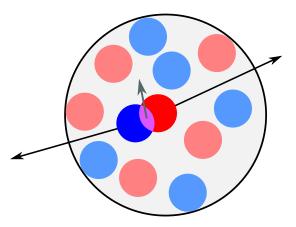
MIT

July 12, 2018



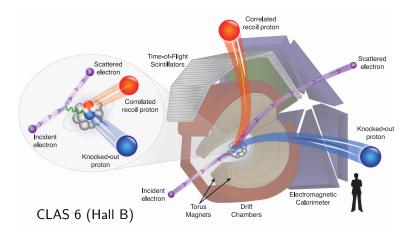

The short-distance *NN* interaction is poorly known.

Scalar part of the NN interaction

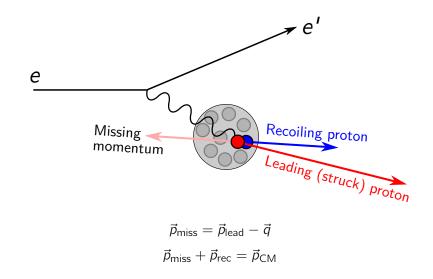


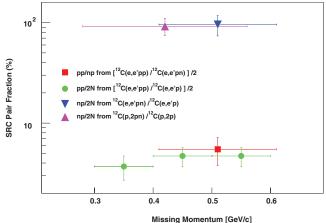
The short-distance *NN* interaction is poorly known.

Scalar part of the NN interaction

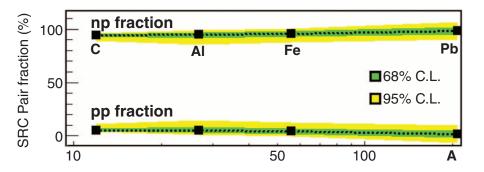


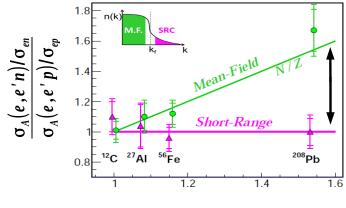
 \approx 20% of nucleons are part of a short-range correlated pair.




- Relative momentum:
 > 300 MeV/c
- CoM momentum: *O*(150 MeV/*c*)

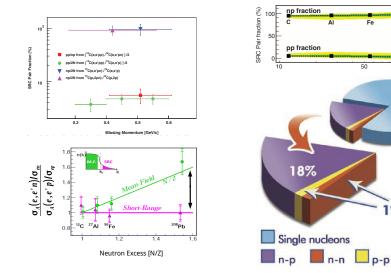
CLAS is well-suited to see triple-coincidences.


Missing Momentum is a proxy for the pre-collision momentum.



wissing womentum [Gev/c

R. Subedi et al., Science 320, 1476 (2008)



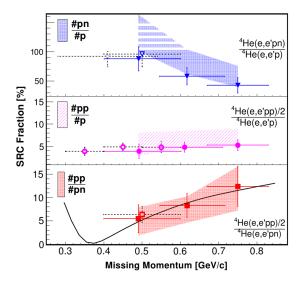
O. Hen et al., Science 346, 614 (2014)

Neutron Excess [N/Z]

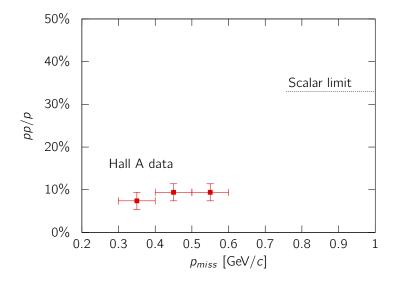
M. Duer et al., to appear in Nature (2018)

Ph

68% C.L.


95% C.L.

100


80%

1%

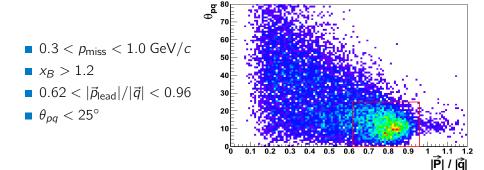
How does np-dominance evolve with momentum?

How does np-dominance evolve with momentum?

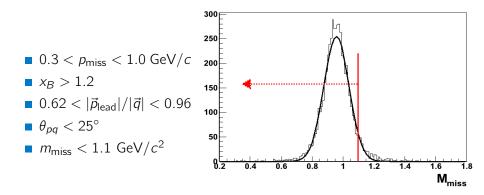
Select A(e, e'p) events in which the p comes from an SRC pair.
 Exact same procedure (exact same EVENTS!) as in:

- O. Hen et al., "Probing pp-SRC in ¹²C, ²⁷Al, ⁵⁶Fe, and ²⁰⁸Pb using the A(e, e'p) and A(e, e'pp) Reactions" (2014)
- E. O. Cohen et al., "Extracting the center-of-mass momentum distribution of pp-SRC pairs in ¹²C, ²⁷AI, ⁵⁶Fe, and ²⁰⁸Pb" (2018)

Select A(e, e'p) events in which the p comes from an SRC pair.
 Exact same procedure (exact same EVENTS!) as in:


- O. Hen et al., "Probing pp-SRC in ¹²C, ²⁷Al, ⁵⁶Fe, and ²⁰⁸Pb using the A(e, e'p) and A(e, e'pp) Reactions" (2014)
- E. O. Cohen et al., "Extracting the center-of-mass momentum distribution of *pp*-SRC pairs in ¹²C, ²⁷Al, ⁵⁶Fe, and ²⁰⁸Pb" (2018)

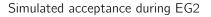
2 See how often there is an additional proton in coincidence.

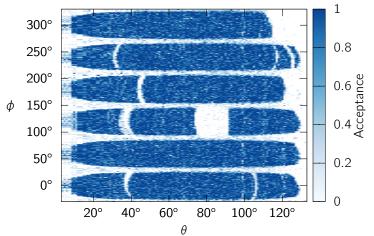

A(e, e'p) Event selection

0.3 < p_{miss} < 1.0 GeV/c
 x_B > 1.2

A(e, e'p) Event selection

A(e, e'p) Event selection

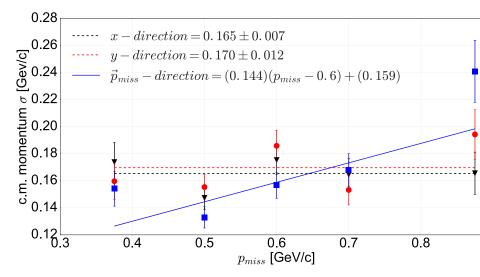


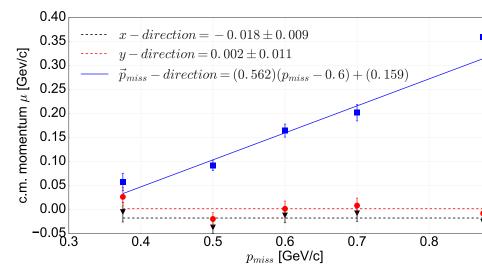

$$\frac{pp}{p} = \frac{\sigma_{e'pp}}{\sigma_{e'p}}$$

$$\frac{pp}{p} = \frac{\sigma_{e'pp}}{\sigma_{e'p}}$$
$$= \frac{N_{e'pp}}{N_{e'p}} \times \frac{A(e')A(p_{\text{lead}})}{A(e')A(p_{\text{lead}})A(p_{\text{recoil}})}$$

$$\frac{pp}{p} = \frac{\sigma_{e'pp}}{\sigma_{e'p}}$$
$$= \frac{N_{e'pp}}{N_{e'p}} \times \frac{A(e')A(p_{\text{lead}})}{A(e')A(p_{\text{lead}})A(p_{\text{recoil}})}$$
$$= \frac{N_{e'pp}}{N_{e'p}} \times \frac{1}{A(p_{\text{recoil}})}$$

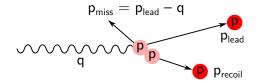
The acceptance for recoil protons is non-trivial.




The acceptance for recoil protons is non-trivial.

- 1 Where do the recoil protons go?
- $\mathbf{2} \rightarrow \mathsf{What}$ is the SRC pair center-of-mass momentum distribution?
- **3** What is that distribution longitudinal to p_{miss} ?
- 4 What is our confidence on that acceptance?

Erez showed that the longitudinal CM distribution has p_{miss} dependence.


Erez showed that the longitudinal CM distribution has p_{miss} dependence.

Erez showed that the longitudinal CM distribution has p_{miss} dependence.

Erez's 5-parameter model: The CM distribution is a 3D Gaussian with μ , σ :

Longitudinal to p_{miss} : Width: $\sigma_{\parallel} = \mathbf{a}_1(p_{\text{miss}} - 0.6 \text{ GeV}) + \mathbf{a}_2$ Mean: $\mu_{\parallel} = \mathbf{b}_1(p_{\text{miss}} - 0.6 \text{ GeV}) + \mathbf{b}_2$ Mean: $\mu_{\perp} = 0$ Determining where the recoil protons go is now a problem of parameter estimation.

$$P(\vec{p}_{\text{recoil}}|\vec{p}_{\text{miss}}) = \int da_1 da_2 db_1 db_2 d\sigma_\perp$$
$$P(\vec{p}_{\text{recoil}}|\vec{p}_{\text{miss}}, a_1, a_2, b_1, b_2, \sigma_\perp)$$
$$\times P(a_1, a_2, b_1, b_2, \sigma_\perp | \vec{D})$$

We can use Bayes' Theorem to estimate $P(a_1, a_2, b_1, b_2, \sigma_{\perp} | \vec{D})$.

$$P(a_1, a_2, b_1, b_2, \sigma_{\perp} | \vec{D}) = \frac{P(\vec{D} | a_1, a_2, b_1, b_2, \sigma_{\perp}) \times P(a_1, a_2, b_1, b_2, \sigma_{\perp})}{P(\vec{D})}$$

We can use Bayes' Theorem to estimate $P(a_1, a_2, b_1, b_2, \sigma_{\perp} | \vec{D})$.

$$P(a_1, a_2, b_1, b_2, \sigma_{\perp} | \vec{D}) = \frac{P(\vec{D} | a_1, a_2, b_1, b_2, \sigma_{\perp}) \times P(a_1, a_2, b_1, b_2, \sigma_{\perp})}{P(\vec{D})}$$

- P(D
 |a₁, a₂, b₁, b₂, σ_⊥) Likelihood

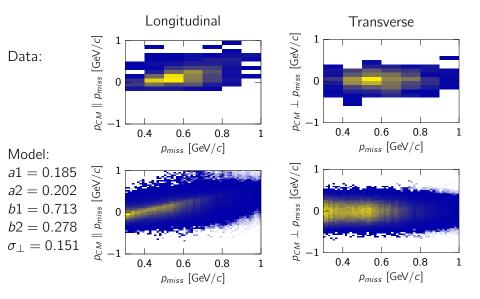
 How likely are the observed data given a guess of a₁, a₂, b₁, b₂, σ_⊥?
- P(a₁, a₂, b₁, b₂, σ_⊥) Prior What is our prior confidence on a₁, a₂, b₁, b₂, σ_⊥? (not so relevant)
 P(D

 P(D

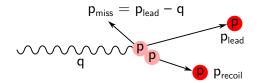
 - Evidence Normalization, not relevant...

Data-driven likelihood estimate

Given a guess of a_1 , a_2 , b_1 , b_2 , σ_{\perp} :


1 For each A(e, e'p) event in data:

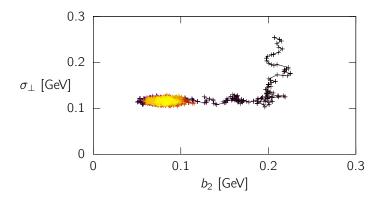
- **•** Randomly sample many \vec{p}_{CM} vectors using 3D Gaussian.
 - **Test** if \vec{p}_{recoil} is accepted using simulated maps.


2 For each A(e, e'pp) event in data:

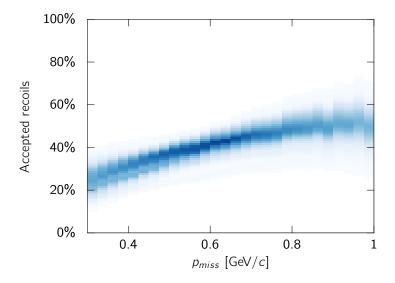
Test against pseudodata distributions from step 1.

Data-driven likelihood estimate

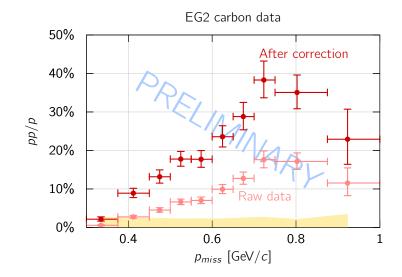
We still need to integrate the posterior to find out where recoils go.

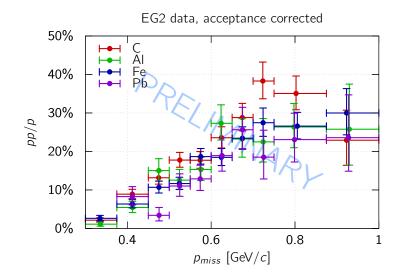


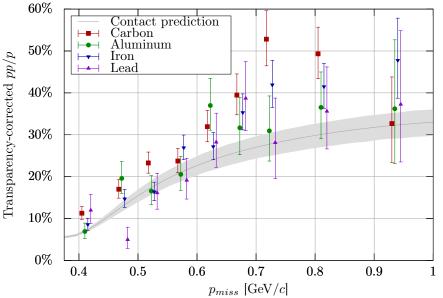
$$P(\vec{p}_{\text{recoil}}|\vec{p}_{\text{miss}}) = \int da_1 da_2 db_1 db_2 d\sigma_{\perp}$$
$$P(\vec{p}_{\text{recoil}}|\vec{p}_{\text{miss}}, a_1, a_2, b_1, b_2, \sigma_{\perp})$$
$$\times P(a_1, a_2, b_1, b_2, \sigma_{\perp}|\vec{D})$$


Markov Chain Monte Carlo will help us integrate.

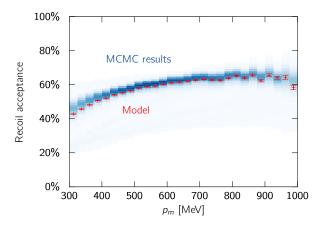
Metropolis-Hastings Algorithm


- Random walk in 5D $(a_1, a_2, b_1, b_2, \sigma_{\perp})$ space
- Choose steps so that frequency \sim probability


Each random walk point predicts an acceptance factor.


We can apply this correction to our pp/p yields.

We can apply this correction to our pp/p yields.



Transparency corrected pp/p

Preliminary closure test

Can the algorithm reproduce model parameters of our choosing?

Outstanding issues

• Verify that the algorithm performs under closure tests.

- Estimate systematic effects
 - Imperfect simulation
 - Bias from the algorithm
- Verify the data handling
 - Fiducial cuts on recoil protons
 - \blacksquare \rightarrow matched acceptance simulations
- Interpretation and corrections
 - Transparency
 - Single charge exchange