A study of the $\gamma d \rightarrow \pi^+ \pi^- d$ reaction (A possible d^* resonance)

Taya Chetry Ken Hicks Ohio University

Reinhard Schumacher Carnegie Mellon University

- Dibaryon: Particle with baryon number B = 2.
- Composed of six valence quarks
 - Six quarks in a bag.
- Theoretically expected and long sought resonances.

dibaryon	Ι	S	SU(3)	legend	mass
\mathcal{D}_{01}	0	1	$\overline{10}$	deuteron	A
${\cal D}_{10}$	1	0	27	nn	A
${\cal D}_{12}$	1	2	27	$N \Delta$	A + 6B
\mathcal{D}_{21}	2	1	35	$N \Delta$	A + 6B
${\cal D}_{03}$	0	3	$\overline{10}$	$\Delta\Delta$	A + 10B
${\cal D}_{30}$	3	0	28	$\Delta \Delta$	A + 10B

Phys. Rev. Lett. 13, 815 – Published 28 December 1964

Introduction

- Dyson-Xuong mass formula:
 - $-\,\mathrm{M}_{\rm NA}\approx2160\;\mathrm{MeV}$
 - $-\,\mathrm{M}_{\mathrm{AA}} \approx 2350\;\mathrm{MeV}$
- A. Gal, H Garcilazo, "3-body model calculations of N Δ and ΔΔ dibaryon resonances" Nuclear Physics A 928 (2014) 73-88
- H. Clement, "On the History of Dibaryons and their Final Observation", Progress in Particle and Nuclear Physics 93 (2017) 195-242

A study of the $\gamma d \rightarrow \pi^+ \pi^- d$ reaction

A study of the $\gamma d \rightarrow \pi^+ \pi^- d$ reaction

T. Chetry, Ohio University

- Dibaryon: Particle with baryon number B = 2.
- Composed of six valence quarks
 - Six quarks in a bag.
- Theoretically expected and long sought resonances.

Ι	S	SU(3)	legend	mass
0	1	$\overline{10}$	deuteron	A
1	0	27	nn	A
1	2	27	$N \Delta$	A + 6B
2	1	35	$N \varDelta$	A + 6B
0	3	$\overline{10}$	$\Delta\Delta$	A + 10B
3	0	28	$\Delta\Delta$	A + 10B
	$ \begin{array}{c} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} I & S & SU(3) \\ \hline 0 & 1 & \overline{10} \\ 1 & 0 & 27 \\ 1 & 2 & 27 \\ 2 & 1 & 35 \\ 0 & 3 & \overline{10} \\ 3 & 0 & 28 \end{array}$	I S SU(3) legend 0 1 $\overline{10}$ deuteron 1 0 27 nn 1 2 27 $N\Delta$ 2 1 35 $N\Delta$ 0 3 $\overline{10}$ $\Delta\Delta$ 3 0 28 $\Delta\Delta$

Phys. Rev. Lett. 13, 815 – Published 28 December 1964

Introduction

- Dyson-Xuong mass formula:
 - $-\,\mathrm{M}_{\rm NA}\approx2160\;\mathrm{MeV}$
 - $-\,\mathrm{M}_{\rm AA}\approx2350\;\mathrm{MeV}$
- A. Gal, H Garcilazo, "3-body model calculations of N Δ and ΔΔ dibaryon resonances" Nuclear Physics A 928 (2014) 73-88
- H. Clement, "On the History of Dibaryons and their Final Observation", Progress in Particle and Nuclear Physics 93 (2017) 195-242

A study of the $\gamma d \rightarrow \pi^+ \pi^- d$ reaction

- The WASA@COSY result for $\Delta\Delta$ by studying: $pn \rightarrow d\pi^0 \pi^0$
- M ~ 2370 MeV, Γ ~ 70 MeV
- $I(J^P) = O(3^+)$: Fact arrived from the reaction is purely isoscalar.

P. Adlarson, et al., Phys. Lett. B 721 (2013) 229
P. Adlarson, et al., Phys. Lett. B 743 (2015) 325
P. Adlarson, et al., Phys. Rev. Lett. 112 (2014) 202301
P. Adlarson, et al., Phys. Rev. C 90 (2014) 035204

• On the production of isotensor dibaryons: $pp \rightarrow pp\pi^+\pi^-$

arXiv:1803.03192 (18 April 2018) arXiv:1803.03193 (18 April 2018)

D₂₁?

A study of the $\gamma d \rightarrow \pi^+ \pi^- d$ reaction

T. Chetry, Ohio University

pp Elastic Scattering

- Partial Wave Analysis.
- ${}^{1}D_{2}$ wave in pp elastic scattering: structure at 2148 – *i* 63 MeV.
- Prominent "resonance pole" seen in the SAID analysis.
- The total partial wave strength is consistent with the sum of its parts

T. Chetry, Ohio University

- Photons on deuteron target
- Spin:
 - $1 + 1 \rightarrow J = \{0, 1, 2\}$
- Isospin:
 - $\{0, 1\} + 0 \rightarrow \{0, 1\}$
- Coherent production removes complicated partial waves for nucleon mixtures.

What we see?

- $d\pi^+$ mass distribution.
- Basic cuts applied.
- Structure at about 2150 MeV.

A study of the $\gamma d \rightarrow \pi^+ \pi^- d$ reaction

T. Chetry, Ohio University

What we see?

counts

d

- $d\pi^{-}$ mass distribution.
- Basic cuts applied.

Hunting dibaryons

- Structure at about 2150 MeV.
- $d\pi^-$ distribution has prominent peak than $d\pi^+$ mass distribution.

A study of the $\gamma d \rightarrow \pi^+ \pi^- d$ reaction

What we see?

- $d\pi^0$ mass distribution.
- Basic cuts applied.
- Structure at about 2150 MeV.
- Will investigate this channel later!

Plot Description

The 2D histogram is made after basic cuts are applied to the data.

Plot on the left is the y-projection of the 2D histogram. It is the mass distribution for the π^0 and the outgoing d.

Plot on the right is the x-projection of the 2D histogram. It is the mass distribution for $\pi^+ \pi^- \pi^0$ or the ω -meson distribution.

A study of the $\gamma d \rightarrow \pi^+ \pi^- d$ reaction

T. Chetry, Ohio University

Goal

Hunting Dibaryons

Investigate $\mathrm{N}\Delta\,$ using $\mathrm{d}\pi\pi$ in the final state.

- $d\pi^+$ channel $\rightarrow d^{*++}$
- $d\pi^0$ channel d^{*+}
- $d\pi$ channel d^{*_0}

Verify the resonance and extract the differential cross section.

Event Selection

- Final state particles detected: two charged pions and a coherent deuteron.
- Particle identification is done based on momentum-dependent timing analysis.

A study of the $\gamma d \rightarrow \pi^+ \pi^- d$ reaction

T. Chetry, Ohio University

Cuts Applied

- Timing cuts made using momentumdependent analysis
 - One "good photon", |Δt|<1 ns
- -37 cm < **z**_{vertex}< -13 cm
- Fiducial cuts applied
 - Minimum Theta Cut
- Minimum Momentum Cuts
- −0.01 < MM²(π⁺π⁻d) < 0.005 [GeV²]
- Bad SC Paddles removed.

Particle	Sector 1	Sector 2	Sector 3	Sector 4	Sector 5	Sector 6
π^+	23, 27		11, 13, 23, 31	23, 33, 35	23, 29	23
	≥ 43	≥ 45	≥ 40	≥ 46	≥ 46	≥ 45
π^{-}	23, 27		11, 15, 16, 23, 31	23, 27, 35	20, 23, 29	23
	≥ 41	≥ 41	$34-36, \ge 41$	≥ 43	≥ 43	≥ 42
d	23, 27	23	11, 22, 23, 31	23	23, 29	23
	≥ 35	≥ 35	≥ 35	≥ 35	≥ 35	≥ 35

- Tagger energy corrections
- Momentum corrections

A study of the $\gamma d { ightarrow} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} d$ reaction

T. Chetry, Ohio University

2.7 < W < 3.2 GeV

A study of the $\gamma d \rightarrow \pi^+ \pi^- d$ reaction

T. Chetry, Ohio University

Backgrounds

- Major Backgrounds:
 - Phase Space:

 $d\pi^+\pi^-$

- Rho meson

 $\pi^+\pi^-$

- Other resonance/reflection $d\pi^+/d\pi^-$
- Other??
- MC generated for each case

A study of the $\gamma d \rightarrow \pi^+ \pi^- d$ reaction

T. Chetry, Ohio University

Yield Extraction

 $W = [2.95, 3.08] Cos\theta_{CM}^{\pi} = [-0.4, -0.2]$

A study of the $\gamma d \rightarrow \pi^+ \pi^- d$ reaction

T. Chetry, Ohio University

Diff. Cross Section

Working formula for DCS :

$$\frac{d\sigma}{d\cos\theta_{CM}^{\pi^-}}(W) = \frac{Yield}{\delta(\cos\theta_{CM}^{\pi^-})A\mathcal{L}(W)}$$

 $A \equiv Detector Acceptance$ Luminosity,

$$\mathcal{L} = \frac{\rho_d N_A l_d}{M_d} N_\gamma$$
$$N_\gamma \equiv N_\gamma (W)$$
$$\rho_d = 0.169 g \ cm^{-3}$$
$$l_d = 24 \ cm$$
$$M_d = 2.014 \ g \ mole^{-1}$$

Differential Cross Section of $\gamma d \rightarrow d^{*+*}\pi^{-} \rightarrow \pi^{*}\pi^{-} d$ 2.7 < √s < 2.8 2.8 < √s < 3.0 preliminary [qu $d\sigma d\sigma d\sigma d\sigma d\sigma$ 3.1 < √s < 3.2 3.0 < √s < 3.1 10 10 -0.50 0.5 -0.5 ٥ 0.5 $cos(\theta_{CM}^{\pi'})$

A study of the $\gamma d \rightarrow \pi^+ \pi^- d$ reaction

T. Chetry, Ohio University

- Resonance peaks seen: three charge states are possible using the same detection sample.
- Currently investigating d*++ and d*0.
- Scaling backgrounds is a challenge. Work in progress (Newer simulations: problem with user_ana, interactive production of files: about 1 hour for one file of 50k events).
- Full understanding would require theory input.