

Status Update

Ciprian Gal University of Virginia

MOLLER experiment in a nutshell

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \propto \frac{\mathcal{M}_{\gamma} \mathcal{M}_Z}{\mathcal{M}_{\gamma}^2} \propto E_{lab} \frac{4\sin^2 \theta}{(3 + \cos^2 \theta)^2} Q_W^e$$

Tree level: $Q_W^e = -(1 - 4\sin^2 \theta_W)$

- MOLLER will be a high precision measurement of the weak charge of the electron
- The parity violating asymmetry in longitudinally polarized electronelectron scattering is directly proportional to the electron weak charge

High precision means considering loops

 $A_{PV}(ee) \propto \rho G_F \left[1 - 4\kappa(0) \sin^2 \theta_W(m_Z)_{\overline{\text{MS}}} \right] + \cdots$

Dominant Contribution at 1-loop

κ(0) known better than 1% of itself

Erler and Ramsey-Musolf (2003) Erler and Ferro-Hernandez (2018)

 $\delta(Q^e_W)$ (theory) = 0.6%, another factor of 2 improvement with full two-loop calculation

MOLLER $\delta(Q^{e_{W}})$ goal = ± 2.1 % (stat.) ± 1.1 % (syst.)

Unique BSM physics access

- Through a precise measurement of electron weak charge we can detect deviations from the SM calculations
- Possible deviations include doubly charged scalar that would lead to lepton number violations
- A dark Z which would only mix with the regular Z boson (would not be visible at colliders)
- Heavy Z's with mass in the TeV range
- Models where Lorentz
 Invariance could be violated
 show that our measurement
 could be sensitive to such
 effects

H. Davoudiasl, H-S. Lee and W. Marciano

Constraining Lorentz Invariance

$$\delta A(t) = \frac{G_F}{\sqrt{2}\pi\alpha} \frac{E_k y (1-y) \sin^2 \theta_W}{(y^2 - y + 1)^2} \vec{k}(t) \cdot \vec{\xi}$$

= $\frac{G_F}{\sqrt{2}\pi\alpha} \frac{E_k^2 y (1-y) \sin^2 \theta_W}{(y^2 - y + 1)^2} \times \left[\sqrt{\xi_X^2 + \xi_Y^2} \sqrt{1 - \cos^2 \alpha \sin^2 \chi} \cos \Omega_{\oplus} t + c_0 \right]$

Ralf Lehnert, J. Phys.: Conf. Ser. 952 (2018) 012008 University of Virginia

Ciprian Gal

Effective Lagrangian

- At low $Q^2(\langle \langle M_Z^2 \rangle)$ the interaction can be modeled as an effective 4fermion contact interaction
- Standard HEP way to introduce new physics through additional contact interactions

$$e \stackrel{e}{\overbrace{\qquad}} e \stackrel{e}{\overbrace{\qquad}} e \stackrel{e}{\overbrace{\qquad}} \mathcal{L}_{e_1e_2} = \sum_{\mathbf{i},\mathbf{j}=\mathbf{L},\mathbf{R}} \frac{\mathbf{g}_{\mathbf{ij}}^2}{2\Lambda^2} \bar{\mathbf{e}}_{\mathbf{i}} \gamma_{\mu} \mathbf{e}_{\mathbf{i}} \bar{\mathbf{e}}_{\mathbf{j}} \gamma^{\mu} \mathbf{e}_{\mathbf{j}}$$

$$e \stackrel{e}{\overbrace{\qquad}} e \stackrel{e}{\overbrace{\qquad}} e \stackrel{e}{\overbrace{\qquad}} \underbrace{\frac{\delta Q_W^e}{Q_W^e}}_{W} = 2.4\% \quad \textcircled{P} \stackrel{e}{\overbrace{\qquad}} \frac{\Lambda}{\|\sqrt{g_{RR}^2 - g_{LL}^2}\|} = 7.5 \text{ TeV}$$

$$an \text{ Gal} \qquad 5 \qquad \text{University of Virginia}$$

Setting limits									
$e^{-} \underbrace{\frac{1}{\Lambda^{2}}}_{e_{ij}} \mathcal{L}_{e_{1}e_{2}} = \sum_{\mathbf{i},\mathbf{j}=\mathbf{L},\mathbf{R}} \frac{\mathbf{g}_{\mathbf{ij}}^{2}}{2\Lambda^{2}} \bar{\mathbf{e}}_{\mathbf{i}} \gamma_{\mu} \mathbf{e}_{\mathbf{i}} \bar{\mathbf{e}}_{\mathbf{j}} \gamma^{\mu} \mathbf{e}_{\mathbf{j}}$ $g_{ij} = 4\pi \eta_{ij}$									
Model	η^f_{LL}	η^f_{RR}	η^f_{LR}	η^f_{RL}	LEP200 Reach	$\Lambda^{ee}_{LL} \sim 8.3 { m ~TeV}$			
LL^{\pm}	±1	0	0	0	E158 Reach	$\Lambda^{ee}_{LL} \sim 12 { m ~TeV}$			
RR^{\pm}	0	±1	0	0		APP OT TU			
VV^{\pm}	± 1	±1	± 1	±1	MOLLER Reach	$\Lambda_{LL}^{\circ\circ} \sim 27 \text{ TeV}$			

 Like E158 before it MOLLER will be able to set limits on leptonic BSM physics that will not be improved without the construction of a new lepton collider or neutrino factory

MOLLER experiment in a nutshell

- Novel toroidal spectrometer
- Segmented integrating detectors + counting detectors (for background)

Kinematics

 The spectrometer design with an odd number of coils affords us the possibility to detector both forward and backward Moeller electrons in the same phi-bite

Polarized Source

MOLLER requires a 2kHz helicity flip with a 10 μ s settle time (Qweak: 1kHz, 60 μ s)

RTP upgrade (UVa):

- The beam requirements for MOLLER will need a polarized source upgrade
- Caryn, Amali and Kent at UVa have conducted several successful beam tests replacing the KD*P cell with a RTP cell
 - electron beam helicity correlated position differences on the order of 100 nm were reached, with clear path towards improvement
- Further studies are scheduled for 2018 to characterize the properties of this new setup

Spectrometer update

- A test coil has been constructed
- Tests plan is in place to characterize and stress the coil
- Series of simulation studies needed to evaluate radiation load on coils is underway
- TOSCA field simulations are being produced to evaluate spectrometer construction tolerances, fringe fields and effects from environmental variations

Vacuum Tank Concept

Polarimetry MOLLER:

 The Compton was last successfully used during the DVCS Fall 2016 run

Compton:

Ciprian Gal

- Currently more work is needed for the laser table in order to get the system locking
- The photon detector works, with plans to upgrade the DAQ system
- Plans under way to recover functionality or replace electron detector

- The new target ladder designed and built at Temple has been extensively tested and is on track to provide fine angle controls
- Kerr effect studies are under way lead by Stony Brook

- A Geant4 based simulation is being developed and tested against old Geant3 simulation package
- The Quads are being modeled in TOSCA and implemented in the new simulation

Target

- Long 150 cm liquid hydrogen target makes use of the experience garnered from other PVES experiments (most recently Qweak)
- The starting point is the E158 target geometry
- Will take ~5kW of power (Qweak target was 3kW)

Detectors

- We have a pretty well established detector geometry and mechanical design (SBU)
 - several beam tests have been performed to ensure we will have the necessary quality
 - working on mechanical supports and assembly
- Shower max detectors have already been prototyped (including mechanical assembly) and tested with the Mainz beam (ISU)
- Radiation exposure and hardness tests have been started (ISU)
- Pion detectors are being developed to directly measure this contribution to our experiment (W&M)

Detectors: First publication

- We used the MAMI facility in Maintz to test different light guide and quartz design
- The air filled light guide produced manageable backgrounds
 - several gases were tested
- Varying the incidence angle of the electrons and light guide blackening produced sizable improvements

Physics signal and background rates

- Radial segmentation will enable for direct measurement of backgrounds
- Azimuthal segmentation will improve our asymmetry extraction

Simulations

- Using already developed background and signal extraction methods we are optimizing the geometrical coverage of our quartz detectors (UVa)
- We are evaluating contributions from non-standard background (rescattering, slit-scattering etc.) (Manitoba)
- We are investigating possible transverse analyzing power effects to evaluate systematics offsets (UVa)
- More and more detailed geometry is introduced in the simulation package and effect on other components is being evaluated

Status

- We have ~120 collaborators from 30 institutions and 5 countries
 - lots of PVES experience from E158, SAMPLE, A4, HAPPEX, G0, PREX, Qweak
- After successful CD-0 review the project is still in a "paused" state
- The collaboration is hard at work improving the design of the detector, shielding, spectrometer, and target
- Our main working groups are very active with an emphasis on dealing with recommendations from previous reviews
- We will have a collaboration meeting later this summer to assess progress and plot course forward

Summary

- The MOLLER experiment will have the largest reach for BSM physics in the foreseeable future
- Our collaboration is making good progress on all fronts towards realization of the technical aspects needed to stage this experiment

Beam monitoring

- Dustin McNulty (Idaho State) constructed and installed Small Angle Monitors in the Hall A beam line
- These detectors were used parasitically during the DVCS/Gmp run to test and characterize our current beam charge monitors
 - Analysis is underway
- Further characterization will need specific conditions (solid target) and higher currents and helicity flip rates
- Plans are being developed to implement new beam monitoring techniques at LBNL (Yury Kolomensky)

- 8 quartz detectors with light guides placed around beam line downstream of pivot
- Symmetric design helps disentangle beam position and angle HCBP's
- For large dynamic range, mix 'n matched

Uncertainty table

Beam	Assumed	Accuracy of	Required 2 kHz	Required cumulative	Systematic
Property	Sensitivity	Correction	random fluctuations	helicity-correlation	contribution
Intensity	1 ppb / ppb	~1%	< 1000 ppm	< 10 ppb	$\sim 0.1 \text{ ppb}$
Energy	-1.4 ppb / ppb	$\sim \! 10\%$	< 108 ppm	< 0.7 ppb	$\sim 0.05~{ m ppb}$
Position	0.85 ppb / nm	$\sim \! 10\%$	$< 47 \ \mu { m m}$	< 1.2 nm	$\sim 0.05~{ m ppb}$
Angle	8.5 ppb / nrad	$\sim 10\%$	$< 4.7 \ \mu \mathrm{rad}$	< 0.12 nrad	$\sim 0.05 \; \mathrm{ppb}$

Error Source	Fractional Error (%)	
Statistical	2.1	
Absolute Normalization of the Kinematic Factor	0.5	
Beam (second order)	0.4	
Beam polarization	0.4	
$e + p(+\gamma) \rightarrow e + X(+\gamma)$ All systematics	0.4	
Beam (position, angle, energy) required at	0.4	
Beam (intensity) sub-1% level	0.3	
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.3	
$\gamma^{(*)} + p \to (\pi, \mu, K) + X$	0.3	
Transverse polarization	0.2	
Neutral background (soft photons, neutrons)	0.1	
Total systematic	1.1	