

Momentum Distributions in A = 3 Asymmetric Nuclei

Reynier Cruz Torres Hall A/C Collaboration Meeting, JLab June 22, 2018

SRC 101

Majority = most abundant nucleon species in an asymmetric nucleus Minority = least abundant nucleon species in an asymmetric nucleus

SRC Pair fraction (%)

00

50

10

np fraction

pp fraction

Α

SRC 101

2. Dominant NN force in 2N-SRC is tensor force.

High momentum tail (300-600 MeV/c) is dominated by L=0,2 S=1 pn-SRC pairs.

Fe

50

Pb

68% C.L.

95% C.L.

100

Competing effects

Competing effects

Competing effects

For light nuclei correlations are predicted to win

<T>_{Minority} VS

	$\frac{ N-Z }{A}$	<t<sub>p></t<sub>	< T _n >	<t<sub>p> - <t<sub>n></t<sub></t<sub>
⁸ He	0.50	30.13	18.60	11.53
$^{6}\mathrm{He}$	0.33	27.66	19.06	8.60
⁹ Li	0.33	31.39	24.91	6.48
³ He	0.33	14.71	19.35	-4.64
$^{3}\mathrm{H}$	0.33	19.61	14.96	4.65
⁸ Li	0.25	28.95	23.98	4.97
$^{10}\mathrm{Be}$	0.2	30.20	25.95	4.25
$^{7}\mathrm{Li}$	0.14	26.88	24.54	2.34
⁹ Be	0.11	29.82	27.09	2.73
$^{11}\mathrm{B}$	0.09	33.40	31.75	1.65

VMC calculations by R. Wiringa et al. (PRC 89, 024305 (2013))

For light nuclei correlations are predicted to win

<T>_{Minority} VS

Can we test these predictions experimentally?

	$\frac{ N-Z }{A}$	<t<sub>p></t<sub>	< <i>T</i> _n >	<t<sub>p> - <t<sub>n></t<sub></t<sub>
⁸ He	0.50	30.13	18.60	11.53
$^{6}\mathrm{He}$	0.33	27.66	19.06	8.60
9 Li	0.33	31.39	24.91	6.48
³ He	0.33	14.71	19.35	-4.64
$^{3}\mathrm{H}$	0.33	19.61	14.96	4.65
⁸ Li	0.25	28.95	23.98	4.97
$^{10}\mathrm{Be}$	0.2	30.20	25.95	4.25
$^{7}\mathrm{Li}$	0.14	26.88	24.54	2.34
$^{9}\mathrm{Be}$	0.11	29.82	27.09	2.73
$^{11}\mathrm{B}$	0.09	33.40	31.75	1.65

VMC calculations by R. Wiringa et al. (PRC 89, 024305 (2013))

Heavy Nuclei

Heavy Nuclei

Reynier Cruz Torres

Small

It's well in range of *ab initio* approaches.

■ Wicked asymmetric ■ A/2Z = 1.5, compare to Pb, ≈ 1.27

Isospin doublet
³He is stable mirror nucleus.

A=3 nuclear systems

Jefferson Lab Transition in the ³He/³H ratio

Jefferson Lab Transition in the ³He/³H ratio

Reynier Cruz Torres

Jefferson Lab electron-induced reactions

Reynier Cruz Torres

Шii

Data taking, Spring 2018

Figure by A.Schmidt

Kinematics

Jefferson Lab

Preliminary Results

Analysis Plan

Reynier Cruz Torres

Reynier Cruz Torres

Invariant Mass Distribution

Missing Energy Distribution

Jefferson Lab Summary and conclusions

- The experimental study of short-range correlations in light nuclei provides a very stringent test of theoretical calculations.
- Experiments on Tritium are a once-in-a-generation opportunity.
- We conducted a successful experiment in Hall-A in April.
- Expect results in the near future. Stay tuned!

Thank you!

"The <u>precious tritium</u> is the fuel that makes this project go" Otto Octavius