Searching for the onset of Color Transparency in Hall C

Holly Szumila-Vance

On behalf of the Hall C Collaboration Friday, June 22 2018

Office of

Science

- Motivation
- Experiment
 - First commissioning experiment in Hall C!
 - Performance
 - Current status
- Summary and Outlook

Color Transparency (CT)

- CT: The disappearance of the final/initial state interaction of hadrons with the nuclear medium for exclusive processes at high momentum transfer
- Not predicted by strongly interacting hadronic picture \rightarrow arises in picture of quark-gluon interactions
 - QCD: color field of singlet objects vanishes as size • is reduced

• Signature for the onset of CT involves rise in nuclear transparency, T_A, as a function of the momentum transfer, Q^2 Complete transparency 1.0

Previous Measurements: Mesons

- CT well established at high energies (essential for DIS)
- Onset is signature for QCD degrees of freedom in nuclei
- Onset of CT has been observed in mesons but not in baryons

Hall C E01-107 pion electroproduction

B.Clasie *et al.* PRL 99:242502 (2007) X. Qian *et al.* PRC81:055209 (2010)

Previous Measurements: Baryons

Experiment overview: First experiment to run in Hall C in the 12 GeV era!

- Coincidence trigger: SHMS measures protons, HMS measures electrons
- Targets: 10 cm LH₂ (Hee'p check), 6% ¹²C (production), Al dummy (background)

Experiment overview: First experiment to run in Hall C in the 12 GeV era!

- Coincidence trigger
- Targets: 10 cm LH₂ (Hee'p check), 6% ¹²C (production), Al dummy (background)

SHMS Characteristics:

- 5 x 10⁻⁴ dP/P resolution
- 4 mSr Acceptance
- 1 to 11 GeV/c
- 5.5 deg to 40 deg
- 18.4 degree vertical bend (dipole)

Carbon elastics

From the focal plane and target quantities, we know delta according to the first order optics matrix elements:

 $\begin{aligned} xfp(mm) &= -1.38 * xtar(mm) - 0.004 * xptar(mr) + 16.5 * delta \\ xpfp(mr) &= -.0602 * xtar(mm) - .72 * xptar(mr) + 3.2 * delta \\ yfp(mm) &= -1.6 * ytar(mm) - 0.03 * yptar(mr) - 1.5 * delta \\ ypfp(mr) &= -.268 * ytar(mm) - 0.61 * yptar(mr) + 0.074 * delta \end{aligned}$

Coincidence timing: relative time difference between e- and p at the target

General coincidence time:
$$t_{coin} = t_e^{tar} - t_p^{tar}$$

The time of each particle:
$$t_{e,p}^{tar} = (t_{e,p}^{trigger} - \Delta t_{e,p}^{corr})$$

Each particle time corrected for:

- Particle traveling along central ray to focal plane ٠
- Path length variations ٠
- Difference in time between hodoscope start and focal • plane time

Hydrogen HMS data: Q² = 8 GeV²

Hydrogen SHMS data: $Q^2 = 8 \text{ GeV}^2$

Hydrogen: W [GeV]

- Hydrogen data used to fine tune the optics settings
- HMS is well-understood even when pushed to higher central momenta

Hydrogen radiative tails

- Radiative effects in agreement with PWIA model in MC (SIMC)
- SHMS optics effects still being improved at higher momentum

Carbon HMS data: Q² = 8 GeV²

Carbon SHMS data: Q² = 8 GeV²

Jefferson Lab

Carbon radiative tails

1.5% ¹²C target, Q2 = 9.5 GeV²

- Radiative effects agree with simulation in the tails.
- Still optimizing optics in the peak

Efficiencies

- Efficiencies vary by rates, configuration
- Initial data comparisons show good quality, consistency
- Full understanding of efficiencies critical to the extraction of the normalized cross section

Consideration	General Efficiency
Proton track (SHMS)	>90%
Electron track (HMS)	>90%
HMS Trigger (3/4)	>99%
SHMS Trigger (3/4)	>99%
HMS Cerenkov	Approx 95%??
SHMS Cerenkov	Approx 95%
HMS calorimeter	Approx 95%
Proton absorption	Approx 92%

Summary

- Measuring the onset of CT is a signature for the onset of QCD degrees of freedom in nuclei
- Experiment took 4 data points in Q² regime 8-14.3 GeV², ideal region to measure the onset of CT
- First experiment to run in the 12 GeV era in Hall C and to take data using the SHMS
- Analysis to extract the transparency is ongoing \rightarrow full results expected by the end of the year!

Thank you to the Hall C Collaborators and to the many, many shift takers!

Work supported by DOE office of science (U.S. DOE Grant Number: DE-FG02-07ER41528)

