

TWIST-3 GENERALIZED PARTON DISTRIBUTIONS

Fatma Aslan, Matthias Burkardt

OUTLINE

➤What is and why study twist-3

Discontinuities in twist-3 GPDs

Discontinuities and Factorization

► Twist-3 quasi-pdfs and pdfs

➤Conclusions

≻Outlook

What is TWIST-3?

Twist=Dimension-Spin

Twist \rightarrow A classification which orders the parton distributions according to their to their dominance for a given hard process.

Leading order \rightarrow Twist 2 Next to leading order \rightarrow Twist 3

2 -particle correlations \rightarrow Twist 2 3-particle correlations (such as quark-gluon-quark) \rightarrow Twist 3

Twist \rightarrow Behavior under longitudinal momentum boost in the IMF

Twist 2 \rightarrow Does not depend on P⁺ Twist 3 $\rightarrow \frac{1}{P^+}$

P⁺ (Longitudinal nucleon momentum)

Why study TWIST-3?

> At 12 GeV twist-3 effects are not negligible.

> They are related to the (average) transverse force acting on a quark in a polarized nucleon.

M. Burkardt, Transverse Force on Quarks in DIS (2008)

$$\int dx \, x^2 g_2 \, , \int dx \, x^2 \, e \, \rightarrow \bot \, force$$

Talk:11:30 am on Wednesday

> There is a relation between one particular twist-3 GPD and the orbital angular momentum of quarks.

$$L^q_{\rm kin} = \int_{-1}^1 dx \, x \, G^q_2(x,\xi,t=0)$$

Penttinen, Polyakov, Shuvaev and Strikman, DVCS amplitude in the parton model (2000)

G_2 in quark target model

twist-3 GPDs (Polyakov & Kitpily) $\int dz^{-}e^{ixz^{-}\bar{p}^{+}} \langle p'|\bar{q}(z^{-}/2)\gamma^{x}q(-z^{-}/2)|p\rangle$ $= \frac{1}{2\bar{p}^{+}}\bar{u}(p') \left[\frac{\Delta^{x}}{2M}G_{1} + \gamma^{*}(H+E+G_{2}) + \frac{\Delta^{x}\gamma^{+}}{\bar{p}^{+}}G_{3} + \frac{i\Delta^{y}\gamma^{+}\gamma_{5}}{\bar{p}^{+}}G_{4}\right]u(p)$

ASIAH, DULKALUL- I WIST-3 GPDs

x

\widetilde{G}_2 in quark target model

Aslan, Burkardt- Twist-3 GPDs

FACTORIZATION

 $\int_{-1}^{1} dx \, \frac{G_2 - \frac{1}{\xi} \tilde{G}_2}{x - \xi + i\varepsilon}$

• $G_2 + \frac{1}{\xi}\tilde{G}_2$ continuous at $x = -\xi$ • G_2

Twist-3 GPDs in Deeply-Virtual Compton Scattering, Aslan, Burkardt, Lorce, Metz, Pasquini, (2018)

Aslan, Burkardt-Twist-3 GPDs

How do the discontinuities behave as $\xi \rightarrow 0$

What happens in different models?

Discontinuties of \tilde{G}_2 and G_2 in quark target and scalar diquark model

Twist-3 GPD	Scalar diquark model	Quark target model
$ ilde{G}_2$	$\begin{array}{l} \text{Discontinuities} \rightarrow \infty \\ as \ \xi \rightarrow 0 \end{array}$	Discontinuities \rightarrow finite as $\xi \rightarrow 0$
G_2	$\begin{array}{l} Discontinuities \ \rightarrow finite\\ as \ \xi \rightarrow 0 \end{array}$	$\begin{array}{l} Discontinuities \rightarrow \infty \\ as \ \xi \rightarrow 0 \end{array}$

Different models give different results

 \triangleright Discontinuities in \tilde{G}_2 behave like a $\delta(\mathbf{x})$ in scalar diquark model

Now let's check the forward limit

the nucleon is boosted to the infinite momentum frame.

$p_z \cdot g_T vs k_z$ and $\tilde{G}_2 vs x$ in scalar diquark model

Twist -3 pdf & Twist -3 quasi-pdf : e

Aslan, Burkardt- Twist-3 GPDs

Twist -2 pdf & Twist -2 quasi-pdf

Twist-2 pdf	Measurement	Scalar diquark model	Quark target model
f_1	Spin average	×	×
g_{1}	Helicity difference	×	×
hı	Helicity flip	×	×

Twist-3 pdf	Measurement	Scalar diquark model	Quark target model
е	Spin average	\checkmark	\checkmark
h∟	Helicity difference	\checkmark	\checkmark
<i>g</i> ₇ (<i>g</i> ₂)	Helicity flip	\checkmark	×

AT TWIST-3 THERE IS SOMETHING THAT DOES NOT EXIST IN TWIST-2: THERE ARE DELTA FUNCTIONS

✓: There is $\delta(x)$ ★: There is no $\delta(x)$

Twist-3 pdf	Measurement	Scalar diquark model	Quark target model
е	Spin average	\checkmark	\checkmark
h∟	Helicity difference	\checkmark	\checkmark
<i>g</i> ⊺ (<i>g</i> ₂)	Helicity flip	\checkmark	×

We identify these delta functions with momentum components in the nucleon state that do not scale as the nucleon is boosted to the infinite momentum.

Aslan, Burkardt- Twist-3 GPDs

Some sum rules are violated if we do not take the $\delta(x)$ into account.

☐ Lorentz invariance:
$$\int_{-1}^{1} dx G_2(x) = 0$$

$$\lim_{\epsilon \to 0} \int_{\epsilon}^{1} dx \{G_2(x) + G_2(-x)\} \neq 0$$

□ Burkhardt – Cottingham sum rule: $\int_{-1}^{1} dx g_1(x) = \int_{-1}^{1} dx g_T(x)$ where $g_1(x) = g_1(x) + g_2(x)$

$$\Box \ \sigma - term \ sum \ rule: \int_{-1}^{1} dx \ e(x) = \frac{1}{2M} \ \langle p | \overline{\psi}(0) \psi(0) | p \rangle = \frac{d}{dm_q} M_N$$
$$\lim_{\epsilon \to 0} \int_{\epsilon}^{1} dx \ \{ e(x) + e(-x) \} \neq \frac{d}{dm_q} M_N$$

It is incorrect to draw conclusions from smooth behavior near x=0 about the behavior at x=0

CONCLUSIONS

✓ Twist-3 GPDs have discontinuities at $x=\pm\xi$.

 \checkmark No issues with DVCS factorization for twist-3.

 \checkmark There is a Delta function at x=0 in twist-3 PDFs (Therefore it would also be interesting to study twist-3 quasi pdfs in lattice qcd).

 \checkmark These $\delta(x)$ functions are related to the wave function components that do not scale when the nucleon is boosted to the infinite momentum frame.

 \checkmark Not taking these $\delta(x)$ functions into account imply apparent violations of sum rules.

OUTLOOK 1

> Calculation of twist -3 GPD/PDFs in models with dynamical symmetry breaking: How does non-perturbative dressing affect the discontinuities and $\delta(x)$?

> Decomposition of twist 3.
$$g_2(x) = g_2^{WW}(x) + g_2^m(x) + g_2^3(x)$$

Quark mass term potentially contains a $\delta(x)$ function Genuine twist-3 term potentially contains a $\delta(x)$ function

Previously

$$h_L(x) = h_L^{WW}(x) + h_L^m(x) + h_L^3(x)$$

We remark that the above calculation indicates that the $\delta(x)$ term appears not only in h_L^m but also in h_L^3 . Furthermore they do not cancel but add up to give rise to $-\delta(x)$ in $h_L(x, Q^2)$ itself.

Burkardt & Koike, Violation of Sum Rules for Twist 3 Parton Distributions in QCD, 2001

> Using the x^2 moments of genuine twist-3 GPDs we can map out the transverse force acting on a quark in a polarized nucleon.

OUTLOOK 2

The origin of these Delta functions
$$\longrightarrow \int dk^{-} \frac{1}{(2k^{+}k^{-} - \mathbf{k}_{\perp}^{2} - m_{q}^{2} + i\varepsilon)^{2}}$$

for
$$k^+ \neq 0$$
 $\int dk^- \frac{1}{(2k^+k^- - \mathbf{k}_\perp^2 - m_q^2 + i\varepsilon)^2} = 0$

 $for \ k^{+} = 0 \qquad \int dk^{-} \frac{1}{(2k^{+}k^{-} - k_{\perp}^{2} - m_{q}^{2} + i\varepsilon)^{2}} = \frac{i\pi\delta(k^{+})}{k_{\perp}^{2} + m_{q}^{2}}.$ $S.-J. \ Chang \ and \ T. -M, \ Phys. \ Rev. \ D7, \ 1147 \ (1972)$ $relationship \ between these \ \delta(x) \ terms \ and \ the infamous \ zero \ modes \ in \ LF \ field \ theory$ $(Burkardt \ \& \ Koike, \ Violation \ of \ Sum \ Rules \ for \ Twist \ 3 \ Parton \ Distributions \ in \ QCD, \ 2001)$

Only these zero mode excitations can mix with the trivial LF vacuum.

(Matthias Burkardt, Light Front Quantization, 1995)

There is a close

OUTLOOK 2

Upon boosting the system to infinite momentum the partons would all become very far from $\eta = 0$, where η is the fraction of the particle's longitudinal momentum carried by the parton. Since all the vacuum activity takes place at $\eta = 0$, it seems very curious how these partons (at finite η) could "feel" what is going on at $\eta = 0$.

The right way to think about spontaneous breaking of chiral symmetry on the LC is that it somehow manifests itself through interactions between partons at finite η and $\eta = 0$ (the vacuum). The problem or puzzle with this is that matrixelements connecting states which are separated by a large distance in rapidity¹ are suppressed. So ho how could the valence quarks possibly feel what is going on at $\eta = 0$?

Leonard Susskind, Matthias Burkardt A Model of Mesons based on χ SB in the Light-Front Frame (1994)

There is a momentum component in the nucleon state which does not scale as the nucleon is boosted to the infinite momentum frame.

Thank you for listening

Aslan, Burkardt- Twist-3 GPDs

Twist -3 pdf & Twist -3 quasi-pdf : e

for
$$k^+ \neq 0$$
 $\int dk^- \frac{1}{(2k^+k^- - \mathbf{k}_\perp^2 - m_q^2 + i\varepsilon)^2} = 0$

$$\int dk^+ dk^- \frac{1}{(2k^+k^- - \mathbf{k}_{\perp}^2 - m_q^2 + i\varepsilon)^2} = \int d^2k_L \frac{1}{(k_L^2 - \mathbf{k}_{\perp}^2 - m_q^2 + i\varepsilon)^2} = \frac{i\pi}{\mathbf{k}_{\perp}^2 + m_q^2}$$

$$f_{sin}(k^+, \mathbf{k}_\perp) = \frac{1}{2p^+} \frac{i\pi\delta(k^+)}{\mathbf{k}_\perp^2 + m_q^2}.$$

there is a close relationship between these $\delta(x)$ terms and the infamous zero-modes in LF field theory