Theory developments for double parton scattering

M. Diehl
Deutsches Elektronen-Synchroton DESY

QCD Evolution, Santa Fe, 24 May 2018

HELMHOLTZ

Hadron-hadron collisions

- standard description based on factorisation formulae
cross sect $=$ parton distributions \times parton-level cross sect

- net transverse momentum p_{T} of hard-scattering products:
- p_{T} integrated cross sect \rightsquigarrow collinear factorisation
- $p_{T} \ll$ hard scale of interaction \rightsquigarrow TMD factorisation
- particles resulting from interactions between spectator partons unobserved

Hadron-hadron collisions

- standard description based on factorisation formulae
cross sect $=$ parton distributions \times parton-level cross sect

- net transverse momentum p_{T} of hard-scattering products:
- p_{T} integrated cross sect \rightsquigarrow collinear factorisation
- $p_{T} \ll$ hard scale of interaction \rightsquigarrow TMD factorisation
- particles resulting from interactions between spectator partons unobserved
- spectator interactions can be soft \rightsquigarrow underlying event or hard \rightsquigarrow multiparton interactions
- here: double parton scattering with factorisation formula cross sect $=$ double parton distributions \times parton-level cross sections

Single vs. double parton scattering (SPS vs. DPS)

- example: prod'n of two gauge bosons, transverse momenta \boldsymbol{q}_{1} and \boldsymbol{q}_{2}

single scattering:

$$
\begin{aligned}
& \left|\boldsymbol{q}_{1}\right| \text { and }\left|\boldsymbol{q}_{2}\right| \sim \text { hard scale } Q \\
& \left|\boldsymbol{q}_{1}+\boldsymbol{q}_{2}\right| \ll Q
\end{aligned}
$$

double scattering: both $\left|\boldsymbol{q}_{1}\right|$ and $\left|\boldsymbol{q}_{2}\right| \ll Q$

- for transv. momenta $\sim \Lambda \ll Q$:

$$
\frac{d \sigma_{\mathrm{SPS}}}{d^{2} \boldsymbol{q}_{1} d^{2} \boldsymbol{q}_{2}} \sim \frac{d \sigma_{\mathrm{DPS}}}{d^{2} \boldsymbol{q}_{1} d^{2} \boldsymbol{q}_{2}} \sim \frac{1}{Q^{4} \Lambda^{2}}
$$

but single scattering populates larger phase space:

$$
\sigma_{\mathrm{SPS}} \sim \frac{1}{Q^{2}} \gg \sigma_{\mathrm{DPS}} \sim \frac{\Lambda^{2}}{Q^{4}}
$$

Single vs. double parton scattering (SPS vs. DPS)

- example: prod'n of two gauge bosons, transverse momenta \boldsymbol{q}_{1} and \boldsymbol{q}_{2}

single scattering:

$$
\begin{aligned}
& \left|\boldsymbol{q}_{1}\right| \text { and }\left|\boldsymbol{q}_{2}\right| \sim \text { hard scale } Q \\
& \left|\boldsymbol{q}_{1}+\boldsymbol{q}_{2}\right| \ll Q
\end{aligned}
$$

- for small parton mom. fractions x double scattering enhanced by parton luminosity
- depending on process: enhancement or suppression from parton type (quarks vs. gluons), coupling constants, etc.
example: $\quad \sigma\left(q q \rightarrow q q+W^{-} W^{-}\right) \propto \alpha_{s}^{2}$
vs. $\quad \sigma\left(d \bar{u} \rightarrow W^{-}\right) \times \sigma\left(d \bar{u} \rightarrow W^{-}\right) \propto \alpha_{s}^{0}$

DPS cross section: collinear factorisation

$$
\frac{d \sigma_{\mathrm{DPS}}}{d x_{1} d \bar{x}_{1} d x_{2} d \bar{x}_{2}}=\frac{1}{C} \hat{\sigma}_{1} \hat{\sigma}_{2} \int d^{2} \boldsymbol{y} F\left(x_{1}, x_{2}, \boldsymbol{y}\right) F\left(\bar{x}_{1}, \bar{x}_{2}, \boldsymbol{y}\right)
$$

$C=$ combinatorial factor
$\hat{\sigma}_{i}=$ parton-level cross sections
$F\left(x_{1}, x_{2}, \boldsymbol{y}\right)=$ double parton distribution (DPD)
$\boldsymbol{y}=$ transv. distance between partons

- follows from Feynman graphs and hard-scattering approximation no semi-classical approximation required
- can make $\hat{\sigma}_{i}$ differential in further variables (e.g. for jet pairs)
- can extend $\hat{\sigma}_{i}$ to higher orders in α_{s} get usual convolution integrals over x_{i} in $\hat{\sigma}_{i}$ and F

Paver, Treleani 1982, 1984; Mekhfi 1985, ..., MD, Ostermeier, Schäfer 2012

DPS cross section: TMD factorisation

- for measured transv. momenta

$$
\begin{aligned}
& \frac{d \sigma_{\mathrm{DPS}}}{d x_{1} d \bar{x}_{1} d^{2} \boldsymbol{q}_{1} d x_{2} d \bar{x}_{2} d^{2} \boldsymbol{q}_{2}}=\frac{1}{C} \hat{\sigma}_{1} \hat{\sigma}_{2} \\
& \times \int \frac{d^{2} \boldsymbol{z}_{1}}{(2 \pi)^{2}} \frac{d^{2} \boldsymbol{z}_{2}}{(2 \pi)^{2}} e^{-i\left(\boldsymbol{z}_{1} \boldsymbol{q}_{1}+\boldsymbol{z}_{2} \boldsymbol{q}_{2}\right)} \int d^{2} \boldsymbol{y} F\left(x_{i}, \boldsymbol{z}_{i}, \boldsymbol{y}\right) F\left(\bar{x}_{i}, \boldsymbol{z}_{i}, \boldsymbol{y}\right)
\end{aligned}
$$

- $F\left(x_{i}, \boldsymbol{z}_{i}, \boldsymbol{y}\right)=$ double-parton TMDs
$\boldsymbol{z}_{i}=$ Fourier conjugate to parton transverse mom. \boldsymbol{k}_{i}
- operator definition as for TMDs: schematically have

$$
F\left(x_{i}, \boldsymbol{z}_{i}, \boldsymbol{y}\right)=\underset{z_{i} \rightarrow x_{i} p^{+}}{\mathcal{F T}}\langle p| \bar{q}\left(-\frac{1}{2} z_{2}\right) \Gamma_{2} q\left(\frac{1}{2} z_{2}\right) \bar{q}\left(y-\frac{1}{2} z_{1}\right) \Gamma_{1} q\left(y+\frac{1}{2} z_{1}\right)|p\rangle
$$

- to be completed by renormalisation, Wilson lines, soft factors
- essential for studying factorisation, scale and rapidity dependence

DPS cross section: TMD factorisation

- for measured transv. momenta

$$
\begin{aligned}
& \frac{d \sigma_{\mathrm{DPS}}}{d x_{1} d \bar{x}_{1} d^{2} \boldsymbol{q}_{1} d x_{2} d \bar{x}_{2} d^{2} \boldsymbol{q}_{2}}=\frac{1}{C} \hat{\sigma}_{1} \hat{\sigma}_{2} \\
& \times \int \frac{d^{2} \boldsymbol{z}_{1}}{(2 \pi)^{2}} \frac{d^{2} \boldsymbol{z}_{2}}{(2 \pi)^{2}} e^{-i\left(\boldsymbol{z}_{1} \boldsymbol{q}_{1}+\boldsymbol{z}_{2} \boldsymbol{q}_{2}\right)} \int d^{2} \boldsymbol{y} F\left(x_{i}, \boldsymbol{z}_{i}, \boldsymbol{y}\right) F\left(\bar{x}_{i}, \boldsymbol{z}_{i}, \boldsymbol{y}\right)
\end{aligned}
$$

- $F\left(x_{i}, \boldsymbol{z}_{i}, \boldsymbol{y}\right)=$ double-parton TMDs
$\boldsymbol{z}_{i}=$ Fourier conjugate to parton transverse mom. \boldsymbol{k}_{i}
- operator definition as for TMDs: schematically have

$$
F\left(x_{i}, \boldsymbol{z}_{i}, \boldsymbol{y}\right)=\underset{z_{i}^{-} \rightarrow x_{i} p^{+}}{\mathcal{F} \mathcal{T}}\langle p| \bar{q}\left(-\frac{1}{2} z_{2}\right) \Gamma_{2} q\left(\frac{1}{2} z_{2}\right) \bar{q}\left(y-\frac{1}{2} z_{1}\right) \Gamma_{1} q\left(y+\frac{1}{2} z_{1}\right)|p\rangle
$$

- to be completed by renormalisation, Wilson lines, soft factors
- essential for studying factorisation, scale and rapidity dependence
- analogous def for collinear distributions $F\left(x_{i}, \boldsymbol{y}\right)$ \Rightarrow not a twist-four operator but product of two twist-two operators

Double parton scattering: ultraviolet problem

$$
\frac{d \sigma_{\mathrm{DPS}}}{d x_{1} d \bar{x}_{1} d x_{2} d \bar{x}_{2}}=\frac{1}{C} \hat{\sigma}_{1} \hat{\sigma}_{2} \int d^{2} \boldsymbol{y} F\left(x_{1}, x_{2}, \boldsymbol{y}\right) F\left(\bar{x}_{1}, \bar{x}_{2}, \boldsymbol{y}\right)
$$

- for $\boldsymbol{y} \ll 1 / \Lambda$ can compute

$$
F\left(x_{1}, x_{2}, \boldsymbol{y}\right) \sim \frac{1}{\boldsymbol{y}^{2}} \text { splitting fct } \otimes \text { usual PDF }
$$

Double parton scattering: ultraviolet problem

$$
\frac{d \sigma_{\mathrm{DPS}}}{d x_{1} d \bar{x}_{1} d x_{2} d \bar{x}_{2}}=\frac{1}{C} \hat{\sigma}_{1} \hat{\sigma}_{2} \int d^{2} \boldsymbol{y} F\left(x_{1}, x_{2}, \boldsymbol{y}\right) F\left(\bar{x}_{1}, \bar{x}_{2}, \boldsymbol{y}\right)
$$

- for $\boldsymbol{y} \ll 1 / \Lambda$ can compute

$$
F\left(x_{1}, x_{2}, \boldsymbol{y}\right) \sim \frac{1}{\boldsymbol{y}^{2}} \text { splitting fct } \otimes \text { usual PDF }
$$

gives UV divergent cross section $\propto \int d^{2} \boldsymbol{y} / \boldsymbol{y}^{4}$
in fact, formula not valid for $|\boldsymbol{y}| \sim 1 / Q$

- problem also for two-parton TMDs

UV divergences logarithmic instead of quadratic

... and more problems

- double counting problem between double scattering with splitting (1v1) and single scattering at loop level

MD, Ostermeier, Schäfer 2011; Gaunt, Stirling 2011; Gaunt 2012 Blok, Dokshitzer, Frankfurt, Strikman 2011; Ryskin, Snigirev 2011, 2012 already noted by Cacciari, Salam, Sapeta 2009

- also have graphs with splitting in one proton only: "2v1"
$\sim \int d^{2} \boldsymbol{y} / \boldsymbol{y}^{2} \times F_{\mathrm{int}}\left(x_{1}, x_{2}, \boldsymbol{y}\right)$
B Blok et al 2011-13
J Gaunt 2012
B Blok, P Gunnellini 2015

A consistent solution

MD, J. Gaunt, K. Schönwald 2017

- regulate DPS: $\sigma_{\mathrm{DPS}} \propto \int d^{2} \boldsymbol{y} \Phi^{2}(\nu y) F\left(x_{1}, x_{2}, \boldsymbol{y}\right) F\left(\bar{x}_{1}, \bar{x}_{2}, \boldsymbol{y}\right)$
- $\Phi \rightarrow 0$ for $u \rightarrow 0$ and $\Phi \rightarrow 1$ for $u \rightarrow \infty$, e.g. $\Phi(u)=\theta(u-1)$
- cutoff scale $\nu \sim Q$
- $F\left(x_{1}, x_{2}, \boldsymbol{y}\right)$ has both splitting and 'intrinsic' contributions analogous regulator for transverse-momentum dependent DPDs
- keep definition of DPDs as operator matrix elements cutoff in \boldsymbol{y} does not break symmetries that haven't already been broken

A consistent solution

MD, J. Gaunt, K. Schönwald 2017

- regulate DPS: $\sigma_{\text {DPS }} \propto \int d^{2} \boldsymbol{y} \Phi^{2}(\nu y) F\left(x_{1}, x_{2}, \boldsymbol{y}\right) F\left(\bar{x}_{1}, \bar{x}_{2}, \boldsymbol{y}\right)$
- $\Phi \rightarrow 0$ for $u \rightarrow 0$ and $\Phi \rightarrow 1$ for $u \rightarrow \infty$, e.g. $\Phi(u)=\theta(u-1)$
- cutoff scale $\nu \sim Q$
- $F\left(x_{1}, x_{2}, \boldsymbol{y}\right)$ has both splitting and 'intrinsic' contributions analogous regulator for transverse-momentum dependent DPDs
- full cross section: $\sigma=\sigma_{\text {DPS }}-\sigma_{\text {sub }}+\sigma_{\text {SPS }}$
- subtraction $\sigma_{\text {sub }}$ to avoid double counting:
$=\sigma_{\text {DPS }}$ with F computed for small \boldsymbol{y} in fixed order perturb. theory much simpler computation than $\sigma_{\text {SPS }}$ at given order

A consistent solution

- regulate DPS: $\sigma_{\text {DPS }} \propto \int d^{2} \boldsymbol{y} \Phi^{2}(\nu y) F\left(x_{1}, x_{2}, \boldsymbol{y}\right) F\left(\bar{x}_{1}, \bar{x}_{2}, \boldsymbol{y}\right)$
- $\Phi \rightarrow 0$ for $u \rightarrow 0$ and $\Phi \rightarrow 1$ for $u \rightarrow \infty$, e.g. $\Phi(u)=\theta(u-1)$
- cutoff scale $\nu \sim Q$
- $F\left(x_{1}, x_{2}, \boldsymbol{y}\right)$ has both splitting and 'intrinsic' contributions analogous regulator for transverse-momentum dependent DPDs
- full cross section: $\sigma=\sigma_{\text {DPS }}-\sigma_{\text {sub }}(1 \mathrm{v} 1+2 \mathrm{v} 1)+\sigma_{\mathrm{SPS}}+\sigma_{\mathrm{tw} 2 \times \mathrm{tw} 4}$
- subtraction $\sigma_{\text {sub }}$ to avoid double counting:
$=\sigma_{\text {DPS }}$ with F computed for small \boldsymbol{y} in fixed order perturb. theory much simpler computation than $\sigma_{\text {SPS }}$ at given order
- can also include twist $2 \times$ twist 4 contribution and double counting subtraction for 2 v 1 term

Subtraction formalism at work

- for $y \sim 1 / Q$ have $\sigma_{\text {DPS }} \approx \sigma_{\text {sub }}$
because pert. computation of F gives good approx. at considered order $\Rightarrow \sigma \approx \sigma_{\text {SPS }} \quad$ dependence on $\Phi(\nu y)$ cancels between $\sigma_{\text {DPS }}$ and $\sigma_{\text {sub }}$
- for $y \gg 1 / Q$ have $\sigma_{\text {sub }} \approx \sigma_{\text {SPS }}$
because DPS approximations work well in box graph
$\Rightarrow \sigma \approx \sigma_{\mathrm{DPS}} \quad$ with regulator fct. $\Phi(\nu y) \approx 1$
- same argument for 2 v 1 term and $\sigma_{\mathrm{tw} 2 \times \mathrm{tw} 4}$ (were neglected above)
- subtraction formalism works order by order in perturb. theory
J. Collins, Foundations of Perturbative QCD, Chapt. 10

Double counting in TMD factorisation for DPS

- left and right box can independently be collinear or hard:
\rightsquigarrow DPS, DPS/SPS interference and SPS
- get nested double counting subtractions

M Buffing, MD, T Kasemets 2017

DGLAP evolution

- define DPDs as matrix elements of renormalised twist-two operators:

$$
F\left(x_{1}, x_{2}, \boldsymbol{y} ; \mu_{1}, \mu_{2}\right) \sim\langle p| \mathcal{O}_{1}\left(\mathbf{0} ; \mu_{1}\right) \mathcal{O}_{2}\left(\boldsymbol{y} ; \mu_{2}\right)|p\rangle \quad f(x ; \mu) \sim\langle p| \mathcal{O}(\mathbf{0} ; \mu)|p\rangle
$$

\Rightarrow separate DGLAP evolution for partons 1 and 2 :

$$
\frac{\partial}{\partial \log \mu_{i}^{2}} F\left(x_{i}, \boldsymbol{y} ; \mu_{i}\right)=P \otimes_{x_{i}} F \quad \text { for } i=1,2
$$

\checkmark DGLAP logarithm from strongly ordered region $\left|\boldsymbol{q}_{1}\right| \ll|\boldsymbol{k}| \sim\left|\boldsymbol{q}_{2}\right| \ll Q_{2}$ repeats itself at higher orders (ladder graphs)

- resummed by DPD evolution in $\sigma_{\text {DPS }}$ if take $\nu \sim \mu_{1} \sim Q_{1}, \mu_{2} \sim Q_{2}$ and appropriate initial conditions $(\rightarrow$ next slide)
- can enhance DPS region over SPS region $\left|\boldsymbol{q}_{1}\right| \sim\left|\boldsymbol{q}_{2}\right| \sim Q_{1,2}$ which dominates by power counting

A model study

- take DPD model with $F=F_{\text {spl }}+F_{\text {int }}$

$$
\begin{gathered}
F_{\mathrm{spl}}\left(x_{1}, x_{2}, \boldsymbol{y} ; 1 / y^{*}, 1 / y^{*}\right)=F_{\text {perturb. }}\left(y^{*}\right) e^{-y^{2} \Lambda^{2}} \quad \text { with } y^{*}=\frac{y}{\sqrt{1+y^{2} / y_{\max }^{2}}} \\
\text { inspired by } b^{*} \text { of Collins, Soper, Sterman } \\
F_{\text {int }}\left(x_{1}, x_{2}, \boldsymbol{y} ; \mu_{0}, \mu_{0}\right)=f\left(x_{1} ; \mu_{0}\right) f\left(x_{2} ; \mu_{0}\right) \Lambda^{2} e^{-y^{2} \Lambda^{2}} / \pi
\end{gathered}
$$

description simplified, actual model slightly refined

- $F_{\text {perturb. }}(y)$ ensures correct perturbative behaviour at small y DGLAP logarithms built up between splitting scale $\sim 1 / y^{*}$ and $\sim Q$
- in SPS subtraction term take instead

$$
F_{\text {spl }}\left(x_{1}, x_{2}, \boldsymbol{y} ; Q, Q\right)=F_{\text {perturb. }}(y)
$$

hard scattering at fixed order, no resummation here

- following plots: show double parton luminosity

$$
\mathcal{L}=\int d^{2} \boldsymbol{y} \Phi^{2}(\nu y) F\left(x_{1}, x_{2}, \boldsymbol{y}\right) F\left(\bar{x}_{1}, \bar{x}_{2}, \boldsymbol{y}\right)
$$

with separate contributions from $1 \mathrm{v} 1,2 \mathrm{v} 1,2 \mathrm{v} 2$

DPS parton luminosities for illustration, model parameters not tuned

- plot \mathcal{L} vs. rapidity Y of q_{1} with q_{2} central (left) or at $-Y$ (right) with $\mu_{1,2}=Q_{1,2}=M_{W}$ at $\sqrt{s}=14 \mathrm{TeV}$
- blue band: vary ν from $0.5 M_{W} \ldots 2 M_{W}$ yellow band: naive scale variation for $\sigma_{1 \mathrm{v} 1} \propto \nu^{2} \quad$ from $\int_{b_{0}^{2} / \nu^{2}} d y^{2}\left(1 / y^{2}\right)^{2}$
$u \bar{u}$

- if ν variation large then need $-\sigma_{\text {sub (1v1) }}+\sigma_{\text {SPS }}$
\rightsquigarrow use 1 v 1 as estimate for importance of SPS at high orders

DPS parton luminosities for ilssataion, modet pramemets not tuned

- plot \mathcal{L} vs. rapidity Y of q_{1} with q_{2} central (left) or at $-Y$ (right) with $\mu_{1,2}=Q_{1,2}=M_{W}$ at $\sqrt{s}=14 \mathrm{TeV}$
- blue band: vary ν from $0.5 M_{W} \ldots 2 M_{W}$ yellow band: naive scale variation for $\sigma_{1 \mathrm{v} 1} \propto \nu^{2} \quad$ from $\int_{b_{0}^{2} / \nu^{2}} d y^{2}\left(1 / y^{2}\right)^{2}$
$u \bar{u}$

- large rapidity separation $\rightsquigarrow x_{1}$ and x_{2} asymmetric
\rightsquigarrow region $y \gg 1 / \nu$ in 1 v 1 enhanced by DPD evolution
\rightsquigarrow evolved $F_{\text {spl }}$ less steep than fixed-order $1 / y^{2}$

DPS parton luminosities

- plot \mathcal{L} vs. rapidity Y of q_{1} with q_{2} central (left) or at $-Y$ (right) with $\mu_{1,2}=Q_{1,2}=M_{W}$ at $\sqrt{s}=14 \mathrm{TeV}$
- blue band: vary ν from $0.5 M_{W} \ldots 2 M_{W}$ yellow band: naive scale variation for $\sigma_{1 \mathrm{v} 1} \propto \nu^{2} \quad$ from $\int_{b_{0}^{2} / \nu^{2}} d y^{2}\left(1 / y^{2}\right)^{2}$

- gluons: prominent evolution effects at all Y

DPS parton luminosities

- plot \mathcal{L} vs. rapidity Y of q_{1} with q_{2} central (left) or at $-Y$ (right) with $\mu_{1,2}=Q_{1,2}=M_{W}$ at $\sqrt{s}=14 \mathrm{TeV}$
- blue band: vary ν from $0.5 M_{W} \ldots 2 M_{W}$ yellow band: naive scale variation for $\sigma_{1 \mathrm{v} 1} \propto \nu^{2} \quad$ from $\int_{b_{0}^{2} / \nu^{2}} d y^{2}\left(1 / y^{2}\right)^{2}$ $u \bar{d}$

- $u \bar{d}$ induced by splitting at $\mathcal{O}\left(\alpha_{s}^{2}\right)$, e.g. by $u \rightarrow u g \rightarrow u d \bar{d}$

DPS parton luminosities
 for illustration, model parameters not tuned

- plot \mathcal{L} vs. $x=x_{1}=x_{2}=\bar{x}_{1}=\bar{x}_{2}$ at fixed \sqrt{s}

$$
\mu_{1,2}=Q_{1,2}=x \sqrt{s}
$$

gg

- DPS region enhanced for small x by evolution

Reminder: single Drell-Yan for $q_{T} \ll Q$

- fast-moving longitudinal gluons coupling to hard scattering
- include in Wilson lines in parton density
- soft gluon exchange between left- and right-moving partons
- include in soft factors $=$ vevs of Wilson lines needs: eikonal approximation, Ward identities, Glauber cancellation \rightsquigarrow talk by J Gaunt on Monday
- essential for establishing factorisation
- permits resummation of Sudakov logarithms TMD factorisation

Collins, Soper, Sterman 1980s; Collins 2011

Reminder: single Drell-Yan for $q_{T} \ll Q$

- absorb soft factor into parton densities:

$$
\begin{gathered}
\sigma=\hat{\sigma} B S A=\hat{\sigma}(B S) S^{-1}(S A)=\hat{\sigma} f_{B} f_{A} \\
\text { with } f_{A}=S^{-1 / 2} f_{A, \text { unsub }} \text { and } f_{A, \text { unsub }}=S A \text { and same for } B
\end{gathered}
$$

Reminder: single Drell-Yan for $q_{T} \ll Q$

- absorb soft factor into parton densities:

$$
\sigma=\hat{\sigma} B S A=\hat{\sigma}(B S) S^{-1}(S A)=\hat{\sigma} f_{B} f_{A}
$$

with $f_{A}=S^{-1 / 2} f_{A, \text { unsub }}$ and $f_{A, \text { unsub }}=S A$ and same for B

- S requires a rapidity cutoff for the gluons:
right-moving gluons $\rightsquigarrow f_{A}$, left-moving ones $\rightsquigarrow f_{B}$
- separation at central rapidity Y (or equivalent variable)

$$
\zeta=2\left(x p_{A}^{+} e^{-Y}\right)^{2} \quad \bar{\zeta}=2\left(\bar{x} p_{B}^{-} e^{+Y}\right)^{2} \quad \zeta \bar{\zeta}=Q^{4}
$$

- resum Sudakov logarithms $\log \left(q_{T} / Q\right)$ via evolution equations

$$
\frac{d}{d \log \zeta} f_{A}(\zeta) \quad \text { and } \quad \frac{d}{d \log \bar{\zeta}} f_{B}(\bar{\zeta})
$$

DPS: factorisation and colour

- generalise previous treatment from single to double Drell-Yan and other DPS processes

- basic steps can be repeated:
- collinear gluons \rightsquigarrow Wilson lines in DPDs
- soft gluons \rightsquigarrow soft factor
- Glauber gluons cancel

MD, D Ostermeier, A Schäfer 2011; MD, J Gaunt, P Plößl, A Schäfer 2015

- absorb soft factors into DPDs M Buffing, T Kasemets, MD 2017

DPS: colour complications

- DPDs have several colour combinations of partons

- colour projection operators
- singlet: $P_{1}^{j j^{\prime}, k k^{\prime}}=\delta^{j j^{\prime}} \delta^{k k^{\prime}} / 3$ as in usual PDFs
- octet: $P_{8}^{j j^{\prime}, k k^{\prime}}=2 t_{a}^{j j^{\prime}} t_{a}^{k k^{\prime}}$
- for gluons: $8_{A}, 8_{S}, 10, \overline{10}, 27$
- corresponding combinations in soft factor \rightsquigarrow matrix in colour space

TMD factorisation for DPS

- ${ }^{R R^{\prime}} S=\underline{S}\left(\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \boldsymbol{y} ; Y\right)$ nontrivial matrix in colour space
- rapidity evolution of \underline{S} understood at perturbative two-loop level

A Vladimirov 2016

- assume that general structure valid beyond two loops:

$$
\frac{\partial}{\partial Y} \underline{S}(Y)=\underline{\widehat{K}} \underline{S}(Y) \text { for } Y \gg 1
$$

work towards an all-order proof: A Vladimirov 2017

- can then construct matrices \underline{s} and \underline{K} with

$$
S\left(Y_{1}+Y_{2}\right)=s\left(Y_{1}\right) s^{\dagger}\left(Y_{2}\right) \quad \frac{\partial}{\partial Y} \underline{s}(Y)=\underline{K} \underline{s}(Y)
$$

$$
\text { for large } Y_{1}, Y_{2}, Y
$$

- define $\underline{F}_{A}=\underline{s}^{-1} \underline{F}_{A, \text { unsub }}$ as analogue of single TMD $f_{A}=S^{-1 / 2} f_{A, \text { unsub }}$
- cross section $\sigma \propto \hat{\sigma}_{1} \hat{\sigma}_{2} \sum_{R}{ }^{R} F_{B}{ }^{R} F_{A}$

Evolution

- evolution of ${ }^{R} F\left(x_{1}, x_{2}, \boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \boldsymbol{y} ; \mu_{1}, \mu_{2}, \zeta\right)$

$$
\begin{array}{llrl}
\frac{2 \partial}{\partial \log \zeta} \underline{F} & =\underline{K}\left(\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \boldsymbol{y} ; \mu_{1}, \mu_{2}\right) \underline{F} & & -\frac{\partial}{\log \mu_{1}} \underline{K}=\underline{\mathbb{1}} \gamma_{K}\left(\mu_{1}\right) \\
\frac{\partial}{\log \mu_{1}} \underline{F} & =\gamma_{F}\left(\mu_{1}, x_{1} \zeta / x_{2}\right) \underline{F} & -\frac{2 \partial}{\partial \log \zeta} \gamma_{F}=\gamma_{K}
\end{array}
$$

- γ_{F} and γ_{K} same as for single-parton TMDs where have Collins-Soper kernel $K(\boldsymbol{z}, \mu)$
- write $\underline{K}=\underline{\mathbb{1}}\left[K\left(\boldsymbol{z}_{1}, \mu_{1}\right)+K\left(\boldsymbol{z}_{2}, \mu_{2}\right)\right]+\underline{M} \quad \Rightarrow \underline{M}$ indep't of $\mu_{1,2}$
- solution:

$$
\begin{aligned}
\underline{F}\left(x_{i}, \boldsymbol{z}_{i}, \boldsymbol{y} ; \mu_{1}, \mu_{2}, \zeta\right)= & e^{-E\left(\boldsymbol{z}_{1} ; \mu_{1}, x_{1} \zeta / x_{2}\right)-E\left(\boldsymbol{z}_{2} ; \mu_{2}, x_{2} \zeta / x_{1}\right)} \\
& \times e^{\underline{M}\left(\boldsymbol{z}_{i}, \boldsymbol{y}\right) \log \left(\zeta / \zeta_{0}\right)} \underline{F}\left(x_{i}, \boldsymbol{z}_{i}, \boldsymbol{y} ; \mu_{0}, \mu_{0}, \zeta_{0}\right)
\end{aligned}
$$

- $E(\boldsymbol{z} ; \mu, \zeta)=$ Sudakov exponent for single-parton TMD contains double logarithm, is colour independent
- matrix exponential of \underline{M} gives single logarithms

Revisiting single TMDs

- Collins' square root construction:

$$
f\left(Y_{C}\right)=\lim _{-Y_{L} \text { and } Y_{R} \rightarrow \infty} \sqrt{\frac{S\left(Y_{R}-Y_{C}\right)}{S\left(Y_{R}-Y_{L}\right) S\left(Y_{C}-Y_{L}\right)}} f_{\text {unsub }}\left(Y_{L}\right)
$$

- general relation on p. $29 \Rightarrow S\left(Y_{1}+Y_{2}\right)=s\left(Y_{1}\right) s\left(Y_{2}\right)$

$$
\Rightarrow s(Y)=\sqrt{S(2 Y)}
$$

- can thus rewrite

$$
\begin{aligned}
f\left(Y_{C}\right) & =\lim _{-Y_{L} \rightarrow \infty} s^{-1}\left(Y_{C}-Y_{L}\right) f_{\text {unsub }}\left(Y_{L}\right) \\
& =\lim _{-Y_{L} \rightarrow \infty} S^{-1 / 2}\left(2 Y_{C}-2 Y_{L}\right) f_{\text {unsub }}\left(Y_{L}\right)
\end{aligned}
$$

Summary

- double parton scattering important in specific kinematics/for specific processes
- recent progress:
towards a systematic formulation of factorisation in QCD
- solution for UV problem of DPS \leftrightarrow double counting with SPS
- simple UV regulator for DPS using distance y between partons
- simple subtraction term to avoid double counting naturally includes " $2 v 1$ " contributions and DGLAP logarithms in DPS
- at large scales Q find dominant 1 v 1 contributions in many cases \rightsquigarrow SPS required at high order in α_{s} before DPS becomes important
- DPS can dominate for small x_{1} and/or x_{2}, enhanced by evolution
- soft factor and rapidity evolution: matrix structure in colour space can generalise Collins' "square root construction" to two-parton TMDs
- leading double logarithms universal, same as for single TMDs

