Theory developments for double parton scattering

M. Diehl

Deutsches Elektronen-Synchroton DESY

QCD Evolution, Santa Fe, 24 May 2018

Hadron-hadron collisions

standard description based on factorisation formulae

 $\mathsf{cross}\ \mathsf{sect} = \mathsf{parton}\ \mathsf{distributions} \times \mathsf{parton}\text{-level}\ \mathsf{cross}\ \mathsf{sect}$

- ightharpoonup net transverse momentum p_T of hard-scattering products:
 - p_T integrated cross sect \leadsto collinear factorisation
 - $p_T \ll$ hard scale of interaction \rightsquigarrow TMD factorisation
- particles resulting from interactions between spectator partons unobserved

Hadron-hadron collisions

standard description based on factorisation formulae cross sect = parton distributions × parton-level cross sect

- ightharpoonup net transverse momentum p_T of hard-scattering products:
 - p_T integrated cross sect \leadsto collinear factorisation
 - $p_T \ll$ hard scale of interaction \leadsto TMD factorisation
- particles resulting from interactions between spectator partons unobserved
- Spectator interactions can be soft → underlying event or hard → multiparton interactions
- ► here: double parton scattering with factorisation formula cross sect = double parton distributions × parton-level cross sections

Single vs. double parton scattering (SPS vs. DPS)

lacktriangle example: prod'n of two gauge bosons, transverse momenta $oldsymbol{q}_1$ and $oldsymbol{q}_2$

single scattering:

$$|m{q}_1|$$
 and $|m{q}_2|\sim$ hard scale Q $|m{q}_1+m{q}_2|\ll Q$

double scattering:

both
$$|\boldsymbol{q}_1|$$
 and $|\boldsymbol{q}_2|\ll Q$

▶ for transv. momenta $\sim \Lambda \ll Q$:

$$\frac{d\sigma_{\rm SPS}}{d^2\boldsymbol{q}_1\,d^2\boldsymbol{q}_2}\sim\frac{d\sigma_{\rm DPS}}{d^2\boldsymbol{q}_1\,d^2\boldsymbol{q}_2}\sim\frac{1}{Q^4\Lambda^2}$$

but single scattering populates larger phase space:

$$\sigma_{
m SPS} \sim rac{1}{Q^2} \, \gg \, \sigma_{
m DPS} \sim rac{\Lambda^2}{Q^4}$$

Single vs. double parton scattering (SPS vs. DPS)

lacktriangle example: prod'n of two gauge bosons, transverse momenta $oldsymbol{q}_1$ and $oldsymbol{q}_2$

single scattering:

 $|\boldsymbol{q}_1 + \boldsymbol{q}_2| \ll Q$

$$|{m q}_1|$$
 and $|{m q}_2|\sim$ hard scale Q

double scattering:

both $|\boldsymbol{q}_1|$ and $|\boldsymbol{q}_2|\ll Q$

- for small parton mom. fractions x double scattering enhanced by parton luminosity
- depending on process: enhancement or suppression from parton type (quarks vs. gluons), coupling constants, etc.

example:
$$\sigma(qq\to qq+W^-W^-)\propto \alpha_s^2$$
 vs.
$$\sigma(d\bar{u}\to W^-)\times \sigma(d\bar{u}\to W^-)\propto \alpha_s^0$$

DPS cross section: collinear factorisation

$$\frac{d\sigma_{\rm DPS}}{dx_1\,d\bar{x}_1\;dx_2\,d\bar{x}_2} = \frac{1}{C}\;\hat{\sigma}_1\,\hat{\sigma}_2\int d^2{\pmb y}\; F(x_1,x_2,{\pmb y})\,F(\bar{x}_1,\bar{x}_2,{\pmb y})$$

 $\hat{\sigma}_i = \mathsf{parton} ext{-level cross sections}$

 $F(x_1, x_2, \boldsymbol{y}) = \text{double parton distribution (DPD)}$

 $oldsymbol{y}=$ transv. distance between partons

- follows from Feynman graphs and hard-scattering approximation no semi-classical approximation required
- ightharpoonup can make $\hat{\sigma}_i$ differential in further variables (e.g. for jet pairs)
- can extend $\hat{\sigma}_i$ to higher orders in α_s get usual convolution integrals over x_i in $\hat{\sigma}_i$ and F

Paver, Treleani 1982, 1984; Mekhfi 1985, ..., MD, Ostermeier, Schäfer 2012

Introduction

DPS cross section: TMD factorisation

for measured transv. momenta

$$\begin{split} \frac{d\sigma_{\text{DPS}}}{dx_1\,d\bar{x}_1\,d^2\boldsymbol{q}_1\,dx_2\,d\bar{x}_2\,d^2\boldsymbol{q}_2} \;&=\; \frac{1}{C}\;\hat{\sigma}_1\,\hat{\sigma}_2 \\ &\times \int \frac{d^2\boldsymbol{z}_1}{(2\pi)^2}\,\frac{d^2\boldsymbol{z}_2}{(2\pi)^2}\,e^{-i(\boldsymbol{z}_1\boldsymbol{q}_1+\boldsymbol{z}_2\boldsymbol{q}_2)}\int d^2\boldsymbol{y}\,F(x_i,\boldsymbol{z}_i,\boldsymbol{y})\,F(\bar{x}_i,\boldsymbol{z}_i,\boldsymbol{y}) \end{split}$$

- $F(x_i, z_i, y) =$ double-parton TMDs $z_i =$ Fourier conjugate to parton transverse mom. k_i
- operator definition as for TMDs: schematically have

$$F(x_i, \boldsymbol{z}_i, \boldsymbol{y}) = \underset{\boldsymbol{z}_i^- \to x_i p^+}{\mathcal{FT}} \langle p | \overline{q} \left(-\frac{1}{2} \boldsymbol{z}_2 \right) \Gamma_2 q \left(\frac{1}{2} \boldsymbol{z}_2 \right) \overline{q} \left(\boldsymbol{y} - \frac{1}{2} \boldsymbol{z}_1 \right) \Gamma_1 q \left(\boldsymbol{y} + \frac{1}{2} \boldsymbol{z}_1 \right) | \boldsymbol{p} \rangle$$

- to be completed by renormalisation, Wilson lines, soft factors
- · essential for studying factorisation, scale and rapidity dependence

Introduction 000

DPS cross section: TMD factorisation

for measured transv. momenta

$$\begin{split} \frac{d\sigma_{\text{DPS}}}{dx_1\,d\bar{x}_1\,d^2\boldsymbol{q}_1\,dx_2\,d\bar{x}_2\,d^2\boldsymbol{q}_2} \;&=\; \frac{1}{C}\;\hat{\sigma}_1\,\hat{\sigma}_2 \\ &\times \int \frac{d^2\boldsymbol{z}_1}{(2\pi)^2}\,\frac{d^2\boldsymbol{z}_2}{(2\pi)^2}\,e^{-i(\boldsymbol{z}_1\boldsymbol{q}_1+\boldsymbol{z}_2\boldsymbol{q}_2)}\int d^2\boldsymbol{y}\,F(x_i,\boldsymbol{z}_i,\boldsymbol{y})\,F(\bar{x}_i,\boldsymbol{z}_i,\boldsymbol{y}) \end{split}$$

- $m{F}(x_i, m{z}_i, m{y}) = ext{double-parton TMDs}$ $m{z}_i = ext{Fourier conjugate to parton transverse mom. } m{k}_i$
- operator definition as for TMDs: schematically have

$$F(x_i, \boldsymbol{z}_i, \boldsymbol{y}) = \underset{z_i^- \to x_i p^+}{\mathcal{FT}} \langle p | \overline{q} \left(-\frac{1}{2} z_2 \right) \Gamma_2 q \left(\frac{1}{2} z_2 \right) \overline{q} \left(y - \frac{1}{2} z_1 \right) \Gamma_1 q \left(y + \frac{1}{2} z_1 \right) | p \rangle$$

- to be completed by renormalisation, Wilson lines, soft factors
- essential for studying factorisation, scale and rapidity dependence
- analogous def for collinear distributions $F(x_i, y)$ \Rightarrow not a twist-four operator but product of two twist-two operators

Introduction 000

Double parton scattering: ultraviolet problem

$$\frac{d\sigma_{\rm DPS}}{dx_1\,d\bar{x}_1\,dx_2\,d\bar{x}_2} = \frac{1}{C}\;\hat{\sigma}_1\,\hat{\sigma}_2\int d^2{\bm y}\; F(x_1,x_2,{\bm y})\,F(\bar{x}_1,\bar{x}_2,{\bm y})$$

• for $y \ll 1/\Lambda$ can compute

$$F(x_1,x_2,oldsymbol{y})\sim rac{1}{oldsymbol{y}^2}$$
 splitting fct \otimes usual PDF

Double parton scattering: ultraviolet problem

$$\frac{d\sigma_{\mathrm{DPS}}}{dx_1\,d\bar{x}_1\,dx_2\,d\bar{x}_2} = \frac{1}{C}\;\hat{\sigma}_1\,\hat{\sigma}_2\int d^2\boldsymbol{y}\;F(x_1,x_2,\boldsymbol{y})\,F(\bar{x}_1,\bar{x}_2,\boldsymbol{y})$$

• for $y \ll 1/\Lambda$ can compute

$$F(x_1,x_2,oldsymbol{y})\sim rac{1}{oldsymbol{y}^2}$$
 splitting fct \otimes usual PDF

gives UV divergent cross section $\propto \int d^2y/y^4$ in fact, formula not valid for $|y| \sim 1/Q$

...and more problems

double counting problem between double scattering with splitting (1v1) and single scattering at loop level

> MD, Ostermeier, Schäfer 2011; Gaunt, Stirling 2011; Gaunt 2012 Blok, Dokshitzer, Frankfurt, Strikman 2011; Ryskin, Snigirev 2011, 2012 already noted by Cacciari, Salam, Sapeta 2009

▶ also have graphs with splitting in one proton only: "2v1"

$$\sim \int d^2 \boldsymbol{y}/\boldsymbol{y}^2 \, imes F_{\mathsf{int}}(x_1, x_2, \boldsymbol{y})$$

B Blok et al 2011-13

J Gaunt 2012

B Blok. P Gunnellini 2015

A consistent solution

MD, J. Gaunt, K. Schönwald 2017

- regulate DPS: $\sigma_{\text{DPS}} \propto \int d^2 \boldsymbol{y} \, \Phi^2(\nu \boldsymbol{y}) \, F(x_1, x_2, \boldsymbol{y}) \, F(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$
 - $\Phi \to 0$ for $u \to 0$ and $\Phi \to 1$ for $u \to \infty$, e.g. $\Phi(u) = \theta(u-1)$
 - cutoff scale $\nu \sim Q$
 - $F(x_1, x_2, y)$ has both splitting and 'intrinsic' contributions

analogous regulator for transverse-momentum dependent DPDs

keep definition of DPDs as operator matrix elements cutoff in y does not break symmetries that haven't already been broken

A consistent solution

MD, J. Gaunt, K. Schönwald 2017

- regulate DPS: $\sigma_{\text{DPS}} \propto \int d^2 \boldsymbol{y} \, \Phi^2(\nu \boldsymbol{y}) \, F(x_1, x_2, \boldsymbol{y}) \, F(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$
 - $\Phi \to 0$ for $u \to 0$ and $\Phi \to 1$ for $u \to \infty$, e.g. $\Phi(u) = \theta(u-1)$
 - cutoff scale $\nu \sim Q$
 - ullet $F(x_1,x_2,oldsymbol{y})$ has both splitting and 'intrinsic' contributions

analogous regulator for transverse-momentum dependent DPDs

- full cross section: $\sigma = \sigma_{DPS} \sigma_{sub} + \sigma_{SPS}$
 - subtraction σ_{sub} to avoid double counting: = σ_{DPS} with F computed for small y in fixed order perturb. theory much simpler computation than σ_{SPS} at given order

A consistent solution

MD, J. Gaunt, K. Schönwald 2017

- ► regulate DPS: $\sigma_{\text{DPS}} \propto \int d^2 \boldsymbol{y} \, \Phi^2(\nu y) \, F(x_1, x_2, \boldsymbol{y}) \, F(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$
 - $\Phi \to 0$ for $u \to 0$ and $\Phi \to 1$ for $u \to \infty$, e.g. $\Phi(u) = \theta(u-1)$
 - cutoff scale $\nu \sim Q$
 - ullet $F(x_1,x_2,oldsymbol{y})$ has both splitting and 'intrinsic' contributions

analogous regulator for transverse-momentum dependent DPDs

- full cross section: $\sigma = \sigma_{DPS} \sigma_{sub (1v1 + 2v1)} + \sigma_{SPS} + \sigma_{tw2 \times tw4}$
 - subtraction σ_{sub} to avoid double counting: = σ_{DPS} with F computed for small y in fixed order perturb. theory much simpler computation than σ_{SPS} at given order
 - can also include twist 2 × twist 4 contribution and double counting subtraction for 2v1 term

Subtraction formalism at work

$$\sigma = \sigma_{\mathsf{DPS}} - \sigma_{\mathsf{sub}} + \sigma_{\mathsf{SPS}}$$

- for $y\gg 1/Q$ have $\sigma_{\text{sub}}\approx\sigma_{\text{SPS}}$ because DPS approximations work well in box graph $\Rightarrow\sigma\approx\sigma_{\text{DPS}}$ with regulator fct. $\Phi(\nu y)\approx 1$
- \triangleright same argument for 2v1 term and $\sigma_{tw2 \times tw4}$ (were neglected above)
- subtraction formalism works order by order in perturb. theory
 - J. Collins, Foundations of Perturbative QCD, Chapt. 10

Double counting in TMD factorisation for DPS

- left and right box can independently be collinear or hard:
 - → DPS, DPS/SPS interference and SPS
- get nested double counting subtractions

M Buffing, MD, T Kasemets 2017

DGLAP evolution

define DPDs as matrix elements of renormalised twist-two operators:

$$F(x_1, x_2, \boldsymbol{y}; \mu_1, \mu_2) \sim \langle p|\mathcal{O}_1(\boldsymbol{0}; \mu_1) \mathcal{O}_2(\boldsymbol{y}; \mu_2)|p\rangle$$
 $f(x; \mu) \sim \langle p|\mathcal{O}(\boldsymbol{0}; \mu)|p\rangle$ \Rightarrow separate DGLAP evolution for partons 1 and 2:

$$\frac{\partial}{\partial \log \mu_i^2} F(x_i, \boldsymbol{y}; \mu_i) = P \otimes_{x_i} F$$

- ▶ DGLAP logarithm from strongly ordered region $|q_1| \ll |k| \sim |q_2| \ll Q_2$ repeats itself at higher orders (ladder graphs)
- resummed by DPD evolution in σ_{DPS} if take $\nu \sim \mu_1 \sim Q_1$, $\mu_2 \sim Q_2$ and appropriate initial conditions (\rightarrow next slide)
- lacktriangle can enhance DPS region over SPS region $|m{q}_1|\sim |m{q}_2|\sim Q_{1,2}$ which dominates by power counting

A model study

▶ take DPD model with $F = F_{spl} + F_{int}$

$$F_{\rm spl}(x_1,x_2,\pmb{y};1/y^*,\,1/y^*) = F_{\rm perturb.}(y^*)\,e^{-y^2\Lambda^2} \quad {\rm with} \quad y^* = \frac{y}{\sqrt{1+y^2/y_{\rm max}^2}}$$

inspired by b^{*} of Collins, Soper, Sterman

$$F_{\text{int}}(x_1, x_2, \boldsymbol{y}; \mu_0, \mu_0) = f(x_1; \mu_0) f(x_2; \mu_0) \Lambda^2 e^{-y^2 \Lambda^2} / \pi$$

description simplified, actual model slightly refined

- F_{perturb.}(y) ensures correct perturbative behaviour at small y DGLAP logarithms built up between splitting scale $\sim 1/y^*$ and $\sim Q$
- ▶ in SPS subtraction term take instead

$$F_{\mathsf{spl}}(x_1, x_2, \boldsymbol{y}; Q, Q) = F_{\mathsf{perturb.}}(y)$$

hard scattering at fixed order, no resummation here

▶ following plots: show double parton luminosity

$$\mathcal{L} = \int d^2 \boldsymbol{y} \, \Phi^2(\nu y) \, F(x_1, x_2, \boldsymbol{y}) \, F(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$$

with separate contributions from 1v1, 2v1, 2v2

DPS parton luminosities for illustration, model parameters not tuned

- ▶ plot $\mathcal L$ vs. rapidity Y of q_1 with q_2 central (left) or at -Y (right) with $\mu_{1,2}=Q_{1,2}=M_W$ at $\sqrt s=14\,\mathrm{TeV}$
- blue band: vary ν from $0.5\,M_W\dots 2\,M_W$ yellow band: naive scale variation for $\sigma_{\rm 1v1}\propto \nu^2$

from $\int_{b_0^2/\nu^2} dy^2 \left(1/y^2\right)^2$

 $u\bar{u}$

▶ if ν variation large then need $-\sigma_{\text{sub (1v1)}} + \sigma_{\text{SPS}}$ \leadsto use 1v1 as estimate for importance of SPS at high orders

DPS parton luminosities for illustration, model parameters not tuned

- ▶ plot $\mathcal L$ vs. rapidity Y of q_1 with q_2 central (left) or at -Y (right) with $\mu_{1,2}=Q_{1,2}=M_W$ at $\sqrt s=14\,\mathrm{TeV}$
- blue band: vary ν from $0.5\,M_W\dots 2\,M_W$ yellow band: naive scale variation for $\sigma_{\rm 1v1}\propto \nu^2$

from $\int\limits_{b_0^2/
u^2}\!dy^2\left(1/y^2\right)^2$

 $u\bar{u}$

▶ large rapidity separation $\rightsquigarrow x_1$ and x_2 asymmetric \rightsquigarrow region $y \gg 1/\nu$ in 1v1 enhanced by DPD evolution \rightsquigarrow evolved $F_{\rm spl}$ less steep than fixed-order $1/y^2$

Summary

DPS parton luminosities for illustration, model parameters not tuned

- ▶ plot $\mathcal L$ vs. rapidity Y of q_1 with q_2 central (left) or at -Y (right) with $\mu_{1,2}=Q_{1,2}=M_W$ at $\sqrt s=14\,\mathrm{TeV}$
- blue band: vary ν from $0.5\,M_W\dots 2\,M_W$ yellow band: naive scale variation for $\sigma_{1\rm v1}\propto \nu^2$

from $\int\limits_{b_0^2/
u^2}\!\!\!dy^2\left(1/y^2\right)^2$

gg

ightharpoonup gluons: prominent evolution effects at all Y

DPS parton luminosities for illustration, model parameters not tuned

- ▶ plot $\mathcal L$ vs. rapidity Y of q_1 with q_2 central (left) or at -Y (right) with $\mu_{1,2}=Q_{1,2}=M_W$ at $\sqrt s=14\,\mathrm{TeV}$
- ▶ blue band: vary ν from $0.5 M_W \dots 2 M_W$ yellow band: naive scale variation for $\sigma_{\text{1v1}} \propto \nu^2$

from $\int\limits_{b_0^2/
u^2} dy^2 \left(1/y^2\right)^2$

 $u\bar{d}$

 $ightharpoonup uar{d}$ induced by splitting at $\mathcal{O}(\alpha_s^2)$, e.g. by $u o ug o udar{d}$

Summary

DPS parton luminosities for illustration, model parameters not tuned

▶ DPS region enhanced for small x by evolution

- ▶ fast-moving longitudinal gluons coupling to hard scattering
 - include in Wilson lines in parton density
- soft gluon exchange between left- and right-moving partons

 - essential for establishing factorisation
 - permits resummation of Sudakov logarithms
 TMD factorisation
 Collins, Soper, Sterman 1980s; Collins 2011

Reminder: single Drell-Yan for $q_T \ll Q$

• absorb soft factor into parton densities:

$$\sigma=\hat{\sigma}\,BSA=\hat{\sigma}\,(BS)\,S^{-1}(SA)=\hat{\sigma}\,f_B\,f_A$$
 with $f_A=S^{-1/2}f_{A,\mathrm{unsub}}$ and $f_{A,\mathrm{unsub}}=SA$ and same for B

Reminder: single Drell-Yan for $q_T \ll Q$

• absorb soft factor into parton densities:

$$\sigma = \hat{\sigma}BSA = \hat{\sigma}\left(BS\right)S^{-1}(SA) = \hat{\sigma}f_Bf_A$$
 with $f_A = S^{-1/2}f_{A,\text{unsub}}$ and $f_{A,\text{unsub}} = SA$ and same for B

- S requires a rapidity cutoff for the gluons: right-moving gluons $\leadsto f_A$, left-moving ones $\leadsto f_B$
- separation at central rapidity Y (or equivalent variable)

$$\zeta = 2(xp_A^+e^{-Y})^2$$
 $\bar{\zeta} = 2(\bar{x}p_B^-e^{+Y})^2$ $\zeta\bar{\zeta} = Q^4$

- resum Sudakov logarithms $\log (q_T/Q)$ via evolution equations

$$\frac{d}{d\log\zeta}f_A(\zeta)$$
 and $\frac{d}{d\log\bar\zeta}f_B(\bar\zeta)$

DPS: factorisation and colour

generalise previous treatment from single to double Drell-Yan and other DPS processes

- basic steps can be repeated:
 - collinear gluons → Wilson lines in DPDs
 - soft gluons → soft factor
 - Glauber gluons cancel

MD, D Ostermeier, A Schäfer 2011; MD, J Gaunt, P Plößl, A Schäfer 2015

absorb soft factors into DPDs

M Buffing, T Kasemets, MD 2017

DPS: colour complications

▶ DPDs have several colour combinations of partons

- colour projection operators
- octet: $P_s^{jj',kk'} = 2t_a^{jj'}t_a^{kk'}$
- for gluons: $8_A, 8_S, 10, \overline{10}, 27$
- corresponding combinations in soft factor \(\times \) matrix in colour space

TMD factorisation for DPS

- $ightharpoonup ^{RR'}S = \underline{S}(m{z}_1, m{z}_2, m{y}; Y)$ nontrivial matrix in colour space
- lacktriangle rapidity evolution of \underline{S} understood at perturbative two-loop level

A Vladimirov 2016

assume that general structure valid beyond two loops:

$$\frac{\partial}{\partial Y} \, \underline{S}(Y) = \widehat{\underline{K}} \, \underline{S}(Y) \quad \text{for} \quad Y \gg 1$$

work towards an all-order proof: A Vladimirov 2017

ightharpoonup can then construct matrices s and K with

$$S(Y_1 + Y_2) = s(Y_1) s^{\dagger}(Y_2)$$
 $\frac{\partial}{\partial Y} \underline{s}(Y) = \underline{K} \underline{s}(Y)$

for large Y_1, Y_2, Y

- define $\underline{F}_A = \underline{s}^{-1} \underline{F}_{A, \text{unsub}}$ as analogue of single TMD $f_A = S^{-1/2} f_{A, \text{unsub}}$
- cross section $\sigma \propto \hat{\sigma}_1 \, \hat{\sigma}_2 \, \sum_B {}^R F_B \, {}^R F_A$

Evolution

$$\frac{\frac{2\partial}{\partial \log \zeta} \underline{F} = \underline{K}(\boldsymbol{z}_1, \boldsymbol{z}_2, \boldsymbol{y}; \mu_1, \mu_2) \underline{F} \qquad -\frac{\partial}{\log \mu_1} \underline{K} = \underline{\mathbb{1}} \gamma_K(\mu_1)
\frac{\partial}{\log \mu_1} \underline{F} = \gamma_F(\mu_1, x_1 \zeta/x_2) \underline{F} \qquad -\frac{2\partial}{\partial \log \zeta} \gamma_F = \gamma_K$$

- γ_F and γ_K same as for single-parton TMDs where have Collins-Soper kernel $K(z, \mu)$
- write $\underline{K}=\underline{\mathbb{1}}\left[K(\pmb{z}_1,\mu_1)+K(\pmb{z}_2,\mu_2)\right]+\underline{M} \quad \Rightarrow \ \underline{M} \ \text{indep't of} \ \mu_{1,2}$
- solution:

$$\underline{F}(x_i, \boldsymbol{z}_i, \boldsymbol{y}; \mu_1, \mu_2, \zeta) = e^{-E(\boldsymbol{z}_1; \mu_1, x_1 \zeta / x_2) - E(\boldsymbol{z}_2; \mu_2, x_2 \zeta / x_1)} \times e^{\underline{M}(\boldsymbol{z}_i, \boldsymbol{y}) \log(\zeta / \zeta_0)} \underline{F}(x_i, \boldsymbol{z}_i, \boldsymbol{y}; \mu_0, \mu_0, \zeta_0)$$

- $E(z; \mu, \zeta) = \text{Sudakov}$ exponent for single-parton TMD contains double logarithm, is colour independent
- \bullet matrix exponential of M gives single logarithms

Revisiting single TMDs

Collins' square root construction:

$$f(Y_C) = \lim_{-Y_L \text{ and } Y_R \to \infty} \sqrt{\frac{S(Y_R - Y_C)}{S(Y_R - Y_L) \, S(Y_C - Y_L)}} \; f_{\mathsf{unsub}}(Y_L)$$

▶ general relation on p. 29 \Rightarrow $S(Y_1 + Y_2) = s(Y_1) s(Y_2)$ $\Rightarrow s(Y) = \sqrt{S(2Y)}$

A solution

can thus rewrite

$$\begin{split} f(Y_C) &= \lim_{-Y_L \to \infty} s^{-1} (Y_C - Y_L) \, f_{\mathsf{unsub}}(Y_L) \\ &= \lim_{-Y_L \to \infty} S^{-1/2} (2Y_C - 2Y_L) \, f_{\mathsf{unsub}}(Y_L) \end{split}$$

Summary

- double parton scattering important in specific kinematics/for specific processes
- recent progress: towards a systematic formulation of factorisation in QCD
- Solution for UV problem of DPS ↔ double counting with SPS
 - simple UV regulator for DPS using distance y between partons
 - simple subtraction term to avoid double counting

naturally includes "2v1" contributions and DGLAP logarithms in DPS

- at large scales Q find dominant 1v1 contributions in many cases \leadsto SPS required at high order in α_s before DPS becomes important
- ullet DPS can dominate for small x_1 and/or x_2 , enhanced by evolution
- soft factor and rapidity evolution: matrix structure in colour space can generalise Collins' "square root construction" to two-parton TMDs
 - leading double logarithms universal, same as for single TMDs